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ABSTRACT

The gyration operator which generates a matrix

from a given matrix is defined. It is shown that

the gyration is related to the concept of combina-

torial equivalence. The hybrid matrices of net-

work theory are gyration matrices. The ABCD and

hybrid matrices are combinatorially equivalent to

their impedance and admittance matrices.

All combinatorially equivalent matrices have

the same degree. The gyration operator also pre-

serves the PP property as well as the rank of the

hermitian part.

The gyration operators form an involutary

Abelian group. The PR property is shown to ex-

tend beyond the impedance and admittance matrices

of a passive network, and a complete set of PR

matrices is given for the description of the net-

work. The relationships between the scattering

and gyration operators are detailed.

A complete synthesis procedure, based on the

gyration operator is given. Any PR immittance

matrix can be synthesized. Three worked exampler

are included.

-ii-



Of special significance is a novel concepz

of 6numerating the degree of a rational matrix

function.
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CHAPTER I

The Gyration Operator

1.1 INTRODUCTION. In this first chapter, we de-

fine an operator termed the gyration. The gyra-

tion operates on a given matrix to produce another

matrix and is symbolized by the equation

r(A) = B

where A is i, given matrix, r the gyration oper-

ator and B i : the resultant matrix, termed the

gyration of A.

This relationship is sufficient to make the

matrices A and B combinatorially equivalent, a

term that was coined by A.W. Tucker 11] . The im-

pedance, admittance chain and hybrid matrices of

network theory are all combinatorially equivalent.

The work of A.W. Tucker emerged from the linear

programming field and is applied here to network

theory.

It is shown that the gyration operator pre-

serves the passivity property (PR). It is also

shown that all combinatorially equivalent matrices

-1-
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have the same degree. (The degree measures the

complexity of a network.) A third invariant of

the gyration operator is the rank of the hermitian

part, a property of some significance in network

theory.

Of special inportance in this chapter is a

novel method of enumerating the degree of a ration-

al matrix function.

The relations between the scattering operator

and the gyration operator are investigated, and

various theorems are detailed.

1.2 POLE MULTIPLICITY OF A RATIONAL MATRIX

FUNCTION.

In a previous paper Duffin and Hazony [5]

studied the properties of the degree of a rational

matrix function F(s). It was brought out that the

degree may be defined in several equivalent ways.

One of these ways concerned the poles of the minors

of F(s).

Definition. Let F(s) be a matrix whose ele-

ments are rational functions of the complex vari-

able s. Let k be the number of distinct poles

that occur in the matrix elements (the pole at
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infinity is counted). Then the degree may be de-

fined to be

(1) 6F(s) = h1 + h2 + ... + hk'

Here h. is the maximum multiplicity with)
.th

which the j tpole appears in the minors of F(s).

By "minor" is meant the determinant of F or

the determinant of any square submatrix of F.

(In addition if the submatrix has no rows or col-

umns we define the empty minor to have the value

1. This convention will be employed in a lemma

to follow.) F need not necessarily be square.

It is convenient to have a notation for the

multiplicity of a pole at a given point. Thus., if

denotes a complex number 0: the point at in-

finity let 6CF(s) be defined as the maximum multi-

plicity of the pole at s = of any minor of the

matrix F(s). We term 6 F the multiplicity of F(s)

at . With this notation we can describe Relation

1 so as to define the degree of F in the form

(2) 6F(s) = Z 6.F(s).

Here the summation is over all points of the com-
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plex planr including the point at infinity. When

the operator 6 is applied to a scalar function,

it will not conflict with the usual meaning of

multiplicity.

To derive properties of the multiplicity

operator 6, the following lemma is very useful.

Lemma 1. Let M and N be n__h n matrices. Then

the determinant of their sum is J
k

(3) IM + NI = JM .iNi i
i=0

Here the sum is over all minors IMI i of M multi-

pied by the algebraic complementary minor INI1

of N. Also IMIlo " NK'= INI, IMIk = IMI,
k

and INk = 1, where k is the total number of minor

determinants in an n by n matrix. The proof of

this result is given in a previous paper [5].

Lemma 2. If 6 G = 0, then 6 (F + G) = 6 F.

Proof. Let H = F + G; and suppose H', F', and G'

denote square submatrices of H, F, and G. Let

6 CiF = 6 C (F); but 6IF"I<6 C(F) if the submatrix

F" has fewer rows than F'. Lemma i is now applied

with M = F' and IN = G'. Then it follows

!"
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that one term on the right side of Relation 3 is

iF'! alone whiie all other terms contain minors

of F with fewer rows than F'. Thus the term IFI

has a greater multiplicity than any other term.

Hence,

6 (F1 + GO) = 6CIF' + G'I = 6CIF'I = 6rF

This shows that 6CH ! 6CF. But F = H - G, so by

a symmetrical argument it follows th 6 CF ? 6 H.

Thus 6 CF = 6 H, and the proof is complete.

Lemma 3 to follow is stated here for complete-

ness; it will be used in a later paper.

Lemma 3. Let O(s) be a scalar function and F(s)

be an n by n matrix function. Then

6C(OF) L 6CF + n6 4.

Proof. Let H = OF, and suppose that 6 H = 6C H'J

for some m by m miner H'. Then

6CH = 6CI4'I = 6,(OmIF'f) :1 6 COm + 6CIF',

but 6 Cm = m6 C I n6.C and 6,IF' 5 6,F, so the

proof is complete.
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1. 3 GYRATION OF A MATRIX.

Given a square matrix A with matrix elements

a... If all / 0, we define a matrix B with matrix
1)

elements

bll = 1/all

(4) b le -a le/a 1 2,3,...

b = a 1 /all = 2, 3,... j
b =aL -a ial,/a 1 1

The matrix B is termed the gyration of A about

pivot a11 . This operation of forming a gyration

may be denoted by I'. Thus,

B = r (A) .

It is cleat then from the above definition that

A = p (B). In other words FF = I. The term

gyration was suggested by the fact that a gyrator

transforms an impedance matrix A into B.

Let xbe an arbitrary column vector. Then

A defines a transformation yj= AxI. In a three

dimensional case this stands for
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Yl a11  a12 a13 X 1

Y2 = a2 1  a22 a23 x2

Y3 a3 1  a3 2  a3 3  x3

Clearly,

1 a1 2  a1 3  x

a1 1  11 21

so we can eliminate x1 from the right side of

these equations and obtain

1 a 12 a13 Y
a1 1  a11  a11

Y2 a21- a 21 a12 a2 21a13 x

Y2 a 1 a 22 a 2112 a 23 a a1a13 I)2
a 2 al a a
y a31  a 31a12 a31a13

Y3  a1 1  32 a11 33 a 11x

Note that the last matrix is precisely B, the gyra-

tion of A. It follows that r be defined as a trans-

position of x 1 and y, and symbolized as
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(5) F(x I W2 x 3 yl Y2 Y3 ) = (yl x2 x3 x1 Y2 Y3 )

A similar definition applies to a gyration of A

about any other diagonal element a.. as pivot.11

This gyration may be denoted as F.. Then it is1

seen from the transposition property of Fi that

if i, j, k be a permutation of the integers

1, 2, 3,

A- I  r i(rj[rk(A)1)

This gives a rapid way (closely related to

Gaussian elimination) of computing the inverse

of a matrix. For example, if

(2 :
A 2 53

rl(A) ( 11

\1 1 2 )
r2[r l (A) ] -2 1 -1
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r3Q(r2L[r1(A)]) -3 (2 -1
-1 1

and the last matrix is A . Then it may be said

that the gyration of a matrix is a partial in-

verse of a matrix.

It will be recognized that the gyration

operation is precisely that of forming the hybrid

matrix, well known in network theory from the

analysis of series parallel configurations[7].

A transformation more general than gyration

has been introduced by A.W. Tucker [11]. Tucker

calls his relation between matrices combinatorial

equivalence. It follows from his Theorem 7 that

two matrices are combinatorially equivalent if

and only if it is possible to pass from one to

the other by a finite succession of elementary

operations of the following three types:

1. Interchanging of any two rows

2. Interchanging of any two columns

3. A gyration

It is clear from this characterization and

the transposition property of gyrations that a

.--.
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combinatorial equivalence can be described as a
permutation of the sequence (x1 x2 x3 Yl Y2 Y3)

such as (yl x3 x2 Y2 Y3 xl)"

A basic property of combinatorial equi-

valence is given in Tucker's Theorem 3 which

follows:

Let (a) denote the set of square submatrices

of A of all orders (including an empty submatrix

¢ of order zero). Let (p) denote the like set for

B where B is combinatorially equivalent to A. Then

there is a one-to-one correspondence pe-*cz between

(p) and (a) such that corresponding subdeterminants

PIj and jaj are proportional within sign. Speci-

fically

IfI = ±,aI/Ia*I

where a = a* corresponds to = ¢ (taking 1II = 1).

The nonsingular matrix a* is called the pivot of

the transformation of A into B.

Tucker says that his work on combinatorial

equivalence was suggested by the well known simplex

method devised by G. B. Dantzig for the solution

of linear program problems. We wish to show in
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this chapter that combinatorial equivalence has

application in the entirely different field of

network synthesis. It is worth noting that ideas

similar to combinatorial equivalence have been

applied to network algebra problems by Bott and

Duffin 21]

We now apply our results on the degree of

rational matrix functions together with Tucker's

Theorem 3.

Theorem 1. Let A be a rational matrix function of

the complex variable s and suppose B is combina-

torially equivalent to A. Then B is a rational

matrix function of the same degree as A.

Proof. Let p denote Ia*I, the pivot. Then accord-

ing to Tucker's theorem PI = jcP-I . Let x be
-i

neither a pole of p or p , and apply the multi-

plicity operator 6x. It follows that

6xjI = 6x(la Ip- 1 ) = 6xIaI. Then

6 xA = 6 xB

Let y be a pole of p. Then it follows that

6 y 1 6y jal - 6p, and so by the definition of

y
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the multiplicity operator

6yB y- 6yA 6 y •

Let z be a pole of p- . If6A>0, let be the

submatrix so that 6z ial = 6 zA. But if 6z A = 0, let

a be the empty matrix, so jai = 1. Then in either

case

6zII = 6zlal + 6zP-  6 zA + 6 ZP

It. follows that

-i
6zB - 6zA + 6zP •

The degree of B is defined as 6B = 6s B ,
s

where the summation is over all finite values and

also the point at infinity. Clearly the points

x, y, and z are distinct but together include all

s points. Thus

6B Z 6xB + 6z B + Z 6y B.
x z y

Substituting the relations just found for 6xB,
6yB, and 6 zB gives

6B - 7 6xA + 7 6 A + 5 6zA - Z 6_y + 7 6zp-
x y Y z y z

xI
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-i

The last two sums cancel since 6p = 6P . Thus

it follows that 6B ! 6A. But combinatorial

equivalence is a symmetric relationship so

6A 1 6B. This proves that 6A = 6B.

1.4 CHARACTERIZATION OF GYRATION MATRICES.

Let A be an n by n matrix of real numbers,

let x be a vector, and let yJ = Axf. The scalar

product of the vectors x; and yJ is denoted by

7 yJ and defined as

n
Y = Z1 xiyi.

If RAx is positive for every real vector R

then A is said to be positive de':inite. This

differs from the standard definition in that we

are not requiring A to be symmetric. We propose

to extend this definition in a natural way when

A has complex matrix elements. Let ' be an arbi-

trary complex vector and let xZ* be the complex

conjugate. Then if x*Ax is in the right half-

plane or on the j-axis, we shall say that A is

is right definite. This condition may be stated

as an inequality

Re Z*AxJ 0
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Note that this condition is less restrictive than

the condition x*Axj t 0, which is one of the de-

fining conditions for non-negative definite her-

mitian matrices.

Theorem 2. The gyration of a right definite matrix

A is a right definite matrix B.

Proof. It is assumed, of course, that the pivot,

say all, does not vanish. Let ul be an arbitrary

vector and let vj = Bul. Let the vector x1 be

defined as follows:

xI  v lx 2 =u 2 , x3 =u 3 ,  . = u n= ' = U2  3 = U "'' Xn=

If yj = Axj , then by the property of a gyration

yl = ul' Y2 =v 2 1 Yn = vn" Thus

u*vl = x*yl - x1*Y 1 + XlYl*

Taking the real part gives

Re u*vj = Re x'*yj or

Re U*Bul = Re 5*Ax; - 0.

This completes the proof.



-15-

Definition. A matrix function F(s) of the complex

variable s is said to be positive real (PR) if I

and II are satisfied:

I. The matrix elements fij (s) are rational

functions of s with real coefficients.

II. For any choice of complex numbers

x , 1 . . xn

n n
Re , Zf..x.x.* 0 for Re s - 0 o

1 1 3 1

Condition II states that F is a right definite

matrix for s in the right half plane. Of course

Condition II is not meaningful at a pole.

Let f(s) = R*Fxl . Then, as is shown in

Appendix 1, Condition II is equivalent to the con-

dition:

Ii a. Re f(s) - 0 for Re s = 0

II b. f(s) has no poles for Re s>0.

II c. For Re s = 0 poles of f(s) are simple

and have non-negative residues.

The impedance (or admittance) matrix of a

passive network is shown Appendix 1 to be positive

real. If the network has no gyrators it is re-

ciprocal; i.e., the matrix F satisfies the

C-
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symmetry conditions:

f.. = f.. for 1, j = 1, 2,

we ace concerned in this chapter mainly with

reciprocal networks. Thus, let G be the gyration

of a matrix F, which satisfies I, II, and III and

f 1 does not vanish identically. Then G may be

regarded as the hybrid matrix of a reciprocal

network. G satisfies I. By Theorem 2, G satis-

fies II, and by Equation 4 which defines a

gyration, the symmetry Condition III is replaced

by:

III- g =g

gl -g l ' = 2, 3, ... , n

Condition III1 may be termed (first) hybrid

symmetry.

Note that if G has hybrid symmetry and g11 (s)

does not vanish identically, then F(G) has regular

symmetry. Thus we may state the following:

Theorem 3. Conditions I, II, and III1 are neces-

sary and sufficient that G be the (first) gyra-

tion of the impedance matrix of a passive net-

work without gyrators, provided gll(S) does not

I
I
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vanish identically.

Proof. This is a consequence of Theorem 2 and the

above definitions.

A positive real matrix F will be said to be

IPR if

n n
IV. Re Z L f..x.x.* = 0 for Re s = 0

11 13 3 1

As is well known, an L C network (ie., a net-

work without resistors or gyrators) is character-

ized by having an impedance (or admittance) matrix

F satisfying I, II, III, IV.

Theorem 4. Conditions I, II, III I , and IV are

necessary and sufficient that G be the (first)

gyration of the impedance matrix of an L C net-

work, provided g1j(s) does not vanish identically.

Proof. Let F = p (G) and let Re s = 0. Then given

a vector u we have shown in the proof of Theorem 2,

that there is a vector x so that Re x*Fx1 = Re uGul

Conversely, given an arbitrary 'X there exists a u,

which satisfies this equation. Then Re u*Gul = 0

for all 'u if and only if Re x*Fxl = 0 for all 'X.

But the latter condition characterizes L C networks,

I
I
I
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so the proof is complete.

It is known that matrix elements of an IPR

impedance matrix are odd functions of s. Likewise

it can be seen from Equation 4 that if G is a

hybrid IPR matrix, gll and g are odd functions

while g and gl, are even functions.

If a matrix G satisfies Conditions I, II,

and III , then G is a positive real matrix

function with hybrid symmetry. However, if gll(s)

vanishes identically, then it is not the gyration

about the first pivot of a symmetric positive real

matrix.

1.5 REMOVAL OF IMAGINARY AXIS POLES.

Let G(s) be the hybrid matrix of a passive

reciprocal network, and suppose that G has poles

on the j axis. According to Condition II c, the

function

n n
g(s) = Z . (s) x X*1 1 gij

i

can have only simple poles on the j axis. Since

the numbers x. are arbitrary, it is seen that

gij(s) can have at most simple poles on the j axis.

1) I
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The proof goes as follows:

First take xi = 6 ih where 6 ih is the

Kronecker delta. Then we see that g(s) = ghh(s)

and so ghh(S) can have only simple poles (by II c).

Next, take x . = 6il + j6ih and so

g(s) = gIj(s) 4 ghh(S) - jI[gh(s) - ghl(S)]

Making use of the hybrid symmetry gives

g(s) = g 1 1 (s) + ghh(s) + 2 jghl(s)

Since g, g11 , and ghh have at most first-order

poles on the j axis, it follows that gh, has a

first order pole at most.

Next take xi = 6ik + 6ih for k - 2, h - 2.

Then similar considerations show that gkh has a

first-order pole at most and the proof is complete.

Thus consider a pole at the point s = so = jW0

on the j-axis and suppose so / 0. Then

a..

) - + g (s)ij (S - So0

where aij is the residue constant and g' ij (s) is

I
I



-20-

bounded at s = s. Let s - so = 0 be a number in

the right half plane. Then for of small absolute

value, it is seen the first term on the right is
1.

dominant. consequently by Condition III it is

seen that the matrix A has hybrid symmetry.

Then for arbitrary E

3-*Gx x*Ax) + S*G -xiS - S
0

The first term on the right is dominant

for 1 j small. Hence, it follows from Condition

II c that x*Axj - 0. In particular, x*Axj is real.

By Condition I it follows that there is a

pole at s = so  -jw and

a.. a..*
gij (s) S - +SO 1 ] +(S)

where g"ij(s) is bounded at s = .+j0°  Let

a.. a. .*

Pij(S) a + a - S
S -- sO  O

0 0

Of course, A* satisfies the same condition as A.

1
Thus P satisfies Coniditions I and III .However,
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since X*Axi and X*A*xl are both real non-negative

it follows that the quadratic form 7 *Px is a sum

of poles on the j axis with real non-negative

residues. Thus P satisfies both II and IV, and so

P is hybrid IPR. The matrix G" = G - P, so

clearly I and III are satisfied. II a is satisfied

because Re x*Gx = Re X*Gx on the j axis. II b

is satisfied because neither G nor P has poles in

the right half plane. Note that G" has no poles

at s = j 0 so at any other j-axis point, residue

residue (x*G"xj) = residue(k*Gxj). Hence, G" satis-

fies II c. This Lroves that G" is a hybrid PR

matrix.

Theorem 5. If G is a hybrid PR matrix then

G=P+Q

where P is a hybrid I P R matrix and Q is a hvbrid

PR matrix without poles on the j-axis.

Proof. If the only poles of G are at +jw of then

the above arg4ment gives the proof with Q = G".

Otherwise the process is repeated on G", etc. It

is seen that a pole at zero or infinity can be re-

moved by a similar method.
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1.6 SCATTERING MATRICES AND HYBRID MATRICES[3]

-1
Let A be a matrix such that (A + I) exists.

Then the scattering operator S is defined as

-1
S(A) = (A - I)(A + I) •

Theorem 6. A is a right definite matrix if and

only if T = I - St*S is a non-negative definite

hernlitian matrix (where St * is the conjugate

transpose of s, and S stands for S(A)).

Proof. Given x let yJ = (A + I)- x so

xi = (A + I)yJ Then

x*Txi = xx - xSt* Sx1
t

= Y*(At*+I)(A+I)yl - y*(At*-I) (A-I)y

= 2y*AyJ + 27A*y*j

Then -Tx = 4 Re (7*Ay) and the proof is complete.

It is desired to find the scattering matrix

S(B) of the gyration matrix B = F(A). It is

sufficient to consider the case of three-by-three

matrices. First it is clear that
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B=

-i. -I -i1

1 0 0 'a1 1  -a12 a -al3 al

a21  a22  a2 3  0 1 0

a31 a32  a3 3  0 0 1
311

This can be written in the form (omitting zeros)

(6) B=

{o 1 )A + (1 0 0 2A +( 1
Moreover B + I=

1 1

1 -A + 1 0 0)A+ 1 -

and B- I=

1 )A ( 10 )A +( 1 2

-1
Since (A + I) is assumed to exist, it follows

-1ithat (B + I) exists. This shows that
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S(B) = (B- I)(B + I)

l-'-1
= 1 (A - I)(A + I) - . This proves

Theorem 7. Let A be a matrix such that all 0

and (A + I) - exists. Let B be the gyration of A.

Then S (B) = JS (A), where S (A) is the scattering

matrix of A, S(B) is the scattering matrix of B,

and J is the identity except Jll = - i.

Now it is noted that J= I so we have

Corollary: T(B) = T(A) so B is PR if and only if

A is PR.

Now suppose that A is a rational matrix

function.

Theorem 8. If A is a rational matrix function and

(A + I) exists, then the degree of A and the

degree of the scattering matrix S(A) are equal.

Proof. Since S(A) = I - 2(A + I) we see that
-i

6S = 6(A + I) = 6(A + I) =6A.

Corollary: The degree of A is equal to the

degree of B.
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Proof. S(B) = JS(A) and since J is a nonsingular

constant matrix, 6S(B) = 6S(A). Thus 6B = 6A.

Theorem 9. Let p, q be any two complex numoers

for which B(p), B(q) are defined, and where

B = r(A). Then

B(p) + B(q)T = M(q)T[A(p ) + A(q)T]MIp),

1 -a1 2 (p) -a1 3 (p)
a 1 1 (p) al1 (py a 11 (p)

where M(p) = 1 0

o 0 1

Proof. By Equation 6 above,

-1
B = CD where

C = 1 A + 0 and

1 0

(0 ) A ( 1

Hence

B(p) + B(q) = C(p)D- (p) + [C(q)D-l (q) ] T



-26-

= D- (q) T[D(q)TC(P) + C(q) TD(P)] D- (p)

Now

D(q) TC(p) + C(q) TD(p) = A(p) + A(q)

also

al (p) a12 (p) a 1 3 (p) -1

D-1 (p) = 0 1 0

00 1

1 -a 1 2 (P) -a 1 3 (P)
a 1 1 (p) a 1 1 (p) all (p) \

0 1 0

o 0 1

-i
Expanding D (q) in a similar fashion completes

the proof of the theorem.

corollary. Let B = F (A) be defined. Then the

rank of the hermitian part of B is the same as

the rank of the hermitian part of A.

Proof. Set p = s and q = s* in the above theorem.

The invariance of rank under a gyration extends
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also to the parahermitian part of the matrix A;

i.e., I[A(s) + A(-S)T], subject to a similar set

of assumptions as in the above corollary.



CHAPTER II

The Gyration Operator in Networks.

2.1 IN"RODUCTION. In this chapter, the F operator

is applied to network synthesis and a complete pro-

cedure is given for the realization of symmetric

PR impedance (or admittance) matrices.

2.2 HYBRID MATRICES IN NETWORK ANALYSIS.

Sunpose we are given a network whose imped-

ance matrix is Z(s). Then the currents and volt-

ages are related by

Vi = z ii

Let H = r (Z) where it is assumed for the moment

that F(Z) is defined. Partitioning V1 and It

as follows

-2=

-28-
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we have by Equation 5,

r~vI v2. 121] [i I v2 v1 121]

i.e. (i)V(E

Consider the impedance Z' and Z" connected as

shown in Figure 1 with ports 1 in parallel and

ports 2 through n in series.

By definition

Vol = z. III

Vil = ZIII

Letting H' = F(Z') and H" = r(Z") we have

It is assumed that this connection does not
change the immittance properties of either net-
work. This can always be ensured by the appropri-
ate use of isolation transformers.

4-
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H o

V 2' 1 2'

= H"

But vI ' = Vl and 12'1 = I201

Hence,

iI  + il"V1

(-..:... = (H' + H")v 2'1 + v2,,o' 12,o

We have thus proved the following:

Theorem 10. Let two networks be connected with

ports 1 in parallel and ports 2 through n in

series. Then the hybrid matrix for the over-all

network equals the sum of the hybrid matrices

for the individual networks.

2.3 SYNTHESIS PROCEDURE.

The network synthesis problem consists of

associating a passive electrical network with a

prescribed PR matrix function. The basic approach
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is to extract simple sections from the matrix

that can be realized by inspection, thereby re-

ducing the degree of the matrix. When the degree

is reduced to zero, the process terminates. These

simple sections are extracted in such a way as to

ensure that what remains is still PR and hence

realizable.

Assume that we are given a symmetric PR

impedance matrix Z to be synthesized. As a first

step, all obvious imaginary axis poles are re-

moved. These are readily synthesized. Once this

is completed, various schemes are used to induce

further imaginary axis poles, which are removed

and synthesized. One of the methods of inducing

these further poles in the scalar case is due to

Brune [12].

In what follows, we shall use the r operator

to give a new extension of the Brune synthesis to

n port. Such extensions already have been made

by a number of people. Brockway McMillan [8] pro-

ceeded with the removal of a certain amount of

resistance from each port of Z until the even-
^ 1"

part matrix Ev Z(s) = .[Z(s) + Z(-s)] becomes
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singular at some point on the j axis, say jwo"

B.D.H. Tellegen [10] has shown in his method that

A
Ev Z can be made singular by the removal of re-

sistance from just one port.

Once Ev Z(s) is singular, the odd part then

is appropriately modified at jw resulting in

Z(jOWo ) being singular. Hence, z(jwo ) has a

pole that can be removed. V. Belevitch [1] con-

siders the Brune methods of the above two and

extends their results to nonreciprocal networks.

R.W. Newcomb [9] considers the nonreciprocal case

with additional detail. (The methods of Gewertz

and Oono [6, p. 276], both non-Brune, consist of

removal of j-axis poles accompanied by successive

matrix inversions. A similar method given by

Duffin [4] shows that network synthesis can be

viewed as a purely algebraic process).

Our extension of the Brune method differs

from the above in that it is not necessary at any

stage to invert a matrix. As will be shown, the

method is minimal in the sense of the following

theorem, stated by Tellegen [10]:

4
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Minimal Theorem. A positive real symmetric matrix

function of degree d can be synthesized as the

impedance matrix of a network having a total of d

reactive elements. By a reactive element we mean

either an inductor or a capacitor. An ideal trans-

former is not regarded as a reactive element.

One of the results of the work to follow is

a new proof of the Minimal Theorem.

Following the above procedures, we assume

that Ev Z(jO O ) is singular. It is shown in [6]

that there exists a real constant matrix A such

that

S=ATZA

has Re z ll(jo) = 0.

(In order to compensate for the application

of this congruence transformation, we also apply

the inverse congruence transformation, which may

be realized by ideal transformers as shown in [6]).

If Z is identically zero then it is shown

in [6] that the entire first row and first column

of Z is identically zero. Syn-hesis then resumes

on the rest of Z. We can thus assume without loss
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of generality that -ii is not identically zero.

Suppose Re i11 is identically zero on the

j-axis. Then l is IPR, and since it cannot

have j-axis poles (these have all been removed)

it must be that Z is identically zero. Since

this has already been ruled out, we may take it
that Re l is not identically zero on the j-axis.

Finally, suppose Z is identically singular.

Then it is shown in [6] that there exists a con-

gruence transformation such that CT Z C has its

entire first row and first column identically zero.

As before, we may assume without loss of generality

that this is not the case, i.e., Z is not identi-

cally singular.

Assume then that Z is an n x n PR impedance

matrix without j-axis poles, not identically

singular, Z11 is not identically zero, Re Z' is

not identically zero on the j-axis and Re i = 0

at jwo"

Following the classical Brune tradition [12]

we now add a scalar b = sL or 1/sc to 'i so that

+ b is zero at Jco" If W0 = 0 or oo then

1 1A
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impedance b is required.

Let Z = Z + b

Then Zll(Jo = 0 but z11 is not identically

zero. Since Z has no j-axis poles, it follows

that Z has only the j-axis pole possibly due to

b. Hence if 0 w o< co, then Z has at most one

j-axis pole in only z11 and this pole is either

at 0 or co, depending on b. If wo = 0 or co, Z

has no j-axis poles.

We are now in a position to reduce the degree

of Z by the removal of a lossless section.

Theorem 11. Let Z(s) be an n x n PR impedance

matrix a) not identically singular, b) with-

out j-axis poles, c) with Re "i not identically

zero on the j-axis and d) Re Zii 0 at j .

Let Z = Z + b where the IPR

scalar b is so chosen that zll(jwo) = 0.

Then Z may be decomposed in the series para-

llel manner shown in Figure 1, where
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1. Z' is PR and 6Z' = 6Z - 6Z".

2. Z" is IPR and .of degree 1 or 2, and

3. Z" contains at most 1 inductor, 1 capac-

itor and 1 n-port ideal transformer (1

core, n windings).

(These are referred to as propositions 1,2, and 3

respectively). Proof is deferred.

This theorem is the basis of the procedure. By

repeated application of this threorem together

with Theorem 12 to follow we eventually reduce
A

the degree of Z _'o zero at .hich point the iter-

ation terminates.

To apply this theorem at each cycle, we may

have to add a reactance to zll* At the comple-

tion of the cycle we therefore have to subtract

this reactance. It turns out, just as in the

scalar case, that this subsequent negative ele-

ment can be incorporated in a perfectly coupled

transformer.

Theorem 12. Let Z, Z and b be as defined in

Theorem 11. Then after the app'.ication of that

theorem to split Z, it is always possible to in-

corporate the compensating negative reactor into

-i
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a perfectly coupled transformer.

The proof is again deferred. The entire

synthesis procedure is displayed in flow chart

form in Figure 2.

Example 1

For the sake of clarity, we choose an example

that is already tailored appropriately for direct

application of Theorem 11. Let Z(s) be given by

s +1 1

s 2+s+l s2+s+l

Z=

1 2(s + 1)

S 2 +s+l s2 +s +

Then r(Z)

s +s+l -i

s2 2 2

s1ss+l s+l)ss)

1 1 22(s+l)is l
\s 2+ s2 + s + 1 (S 2 + i)(S 2+ s +i
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1 2_ S__0 s +1

-(12 + 1s + 1s + s +1

=P + 0

1 _

S +s

r (P) - = Z

1 1
s S

1l 0

r (Q) = -z

1
0 17-s + s + 1

Hence, Z is realized by the network of Figure 3.

Example 2. Consider a problem given in [6, p. 275].

2s2 + 4s + 5 s2 + 2s + 2
2s2 + s + 1 2s 2+ s +1

sz(s) =

22
s + 2 + 2 S2 + s +1

2s + S + 82s+2



4s 4 + 8s 2 + 5 2s + 3s 2 + 2

A 2s 4 + 3s 2 + 2 2s4 + 2s + 1
Ev Z

4s4 + 3s2 + 1

and

(s2 + 2 2
det Ev Z = + -(2 + )

(4s + 3s2 + 1)

A

Thus det Ev Z is already zero at +j, tjr2/2.

Choosing w = 1 we have

1 1
2 2

Re 2(j) =

1 1

Thus, using

A=

10
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we have Re(AT '(j)A)I 1 = 0. Hence

s + s + 2 -(s + 2s +3)

22
^ -(s + 2s + 3) 2s2+ 4s +5

= ATZA =

2s + s + 1

and at s = j, z1 1 - -j.

Thus

s 0

Z +

2 2

2(s2 + 1)(s +1) -(s 2 + 2s + 3)

-(s 2 + 2s + 3) 2s 2 + 4s + 5

2s 2 + s + 1

has a j-axis zero in zll.

Forming F (Z), we obtain
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/2 2
2s+ s + 1 s + 2s + 3

-(s2 + 2s + 3) -(s + 2s +3)
-(s+ 2S +2
2s + s + 1

2(s2 + i)(S + 1)

0 2s2 +4 +5

2s2 + s + I1

Since Zll was zero at s = j, F(Z) has a pole at

S j.

The pole matrix is

s 2

-2 4s

2(s 2 + 1I)

which is of degree 2. P can be removed from f(Z) to

give
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2 2
2s + 2

z' =r(P) -

2 2
S S

Note that the degree of Z" is also 2.

Removing P from r (Z) leaves Q = F (Z) - P.

Then

7 2s+2 -i

z' =r(Q)

K-i 4s2 + s + 2

4s + 2s + 2

Since we added s to port I of 2, we must now
A

subtract it. Also, to get Z we require the in-

verse congruence transformer at the input. Note

that Z' and Z" posses series inductors in ports

1, which can be combined with -s as shown in

Figure 4.
A

The final realization of Z(s) is given in

Figure 5.

Note: The Brune transformer could be regarded as

an ideal transformer and one inductor. Thus four

ITI'V



-43-

reactive elements are required, which is in ac-

A
cord with the fact that 6Z = 4.

The dots on the transformers have the follow-

ing significance. When progressing along the

winding from the dotted terminal, each winding

encircles the core in the same sense. Thus, if

dots are at the same ends of the windings, the

coupling term in the matrix is positive; if at

opposite ends, negative.

Proof of Theorems 11 and 12. Before commencing

with the proof of Theorem 11, it is necessary to

make some comments concerning notation. While

the operator r was completely defined by Equations

4, it will be convenient in what foll- ws to em-

ploy the following approach.

Let Z be partitioned into

Zll Z12

z21r

where
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Z 11 is a scalar,

is a row-vector of n - 1 elements,

S21 is a column-vector of n - 1 elements,

and

Z22 is an n - 1 x n - 1 matrix.

Regarding two n-vectors as n x 1 matrices,

we have

xlyl xlY 2  X1Y3 ..  . . . . . . xlyn

x2yl X. . . . . . . . . . . . x 2yn

XYl XnY3. .. . . . . . . . . XnYn

which is a rank 1, n x n matrix. Letting be

a null row-vector and 0 a null matrix it can be

verified that

r(z) = (zll)i 12

(2)1 Z2+ ; !Z22)

is consistent with the definition of p(Z) given in
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Equation 4.

Proof of Theorem 11.

Proposition 1.

Form r(Z). Since z has discrete zeros at

+jw , r(Z) has poles there. By Theorem 2 or

the corollary to Theorem 7, r (Z) is hybrid PR.

Hence by Theorem 5, [ (:) can be decomposed into

a hybrid IPR matrix P, formed by the removal of

the poles at +jco from 1(Z) and a matrix 0 --

r(z) - P, which is hybrid PR without j-axis poles.

It is shown in the proof of Proposition 3

below that pll is not identically zero. Hence

v = r (P) exists.

Suppose qll is identically zero. Since pll

is IPR, it follows that Re(pll + qll) = 0 every-

where on the j-axis. Hence by the corollary to

Theorem 9, zll = p (pll + ql, ) is also IPR. But

this contradicts assumption c) of the statement

of this theorem. Hence qll is not identically

zero and so Z' = r(Q) exists.

P and Q share no common poles. Hence it

follows by Equation 1 that 6(P + Q) = 6P + 6Q.

(For a detailed proof, see Theorem 7 of (5]).
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But by Theorem 1, the degree is invariant under

a gyration, so

6Z = 6P + 6Q - 6Z' + 6Z'1

(It will be shown below that 6P is 1 or 2). Hence

6Z' = 6Z - 6Z". Moreover Z' is symmetric PR

since Q is hybrid PR. This completes the proof

of Proposition 1.

Propositions 2 and 3.

By the PR property II, Re Z is non-negative

definite for Re s 0. Hence, (Re z11 )(Re Zkk) -

(Re Zlk) 2 0 on s jw for k = 2, . . . n.

But at Jw0 Re z = 0. Hence Zlk(jwo) is pure

imaginary and we write at s = jw0 ,

(7) Z1 2 = j a= (Z21l)T

Next define

(8) U = (zll)l ( )(1 Z1 2 )

Assume first that W/ o or co. Then the hybrid

IPR pole matrix removable from r (Z) is given by

M7
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(s - jW0 )U I  jW0

(9) P -
s - J-i

( s + 9 W 0 ) U I  s-

+
s + JCUo

v V*
+ say.

s- j0 0 s + jWo0

Now by Equation 8, U is of Rank 1. Hence the

residue matrices V and V* are likewise of Rank 1,

and so, by Equation 1, P is of degree 2.

Let V M + jN. Then

2sM- 2w0 N

2 2

s + 12

2 +n W 0 11  M22)
2s2

5~ +w W21  0
N N9

-in21- I 22)
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V1 V1 2

Writing V = --- we have by Equation 9,

V V

V2 1 1 22

s - jW 0
= 1 = bVll

Zl
s= iwo0

say, which is real and positive since z is PR.

Z12

V12 = -(s- j0 O ) - =-jba by Equation 7

0

= -jP say.

z 211

V211 (s - j 0o ) - = jbal by Equation 7
S = J o

=j

Finally

(Z 21 )Z12V22 = -(s - jW 0 ) (z 1 1

Sz= -WO

= bat a.
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Hence

2s

(10) P 2 2

s + 0
¢ bal -

2w of

0I+ -2 2s + W

0 ~

Define Z" ='(P), then

2 2 -S + W

0 0
2sb sb

sb sb

Z" can be realized by Figure 6.

When wo = 0 or co, the above analysis leads

to Z" being a matrix of degree 1 and consisting

solely of a shunt reactor across port I, with

short circuits at the remaining ports.

This completes the proof of Theorem 11.
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Proof of Theorem 12.

First we require the following:

Lemma 4. Let a 0 0 or 00. Then the matrix Z'

of Theorem 11 can be realized either by a series

inductor and an ideal capacitive transformer (as

proved previously) or by a series capacitor and an

ideal inductive transformer.

Proof: Observe that for 7 a real constant vector,O -'
0 e

both G -

(-el

and -G are hybrid PR by Definition I, II, and III

It is worth noting that they are realizable with

one transformer and one gyrator.

We recall that in the proof of Theorem 11,

the matrix p (Z) was split into P and Q. The

situation is not changed if we realize instead

P + G and Q - G. Both are hybrid PR and hence

realizable. Moreover, 6(P + G) = 6P and 6(Q - G) =

6Q by Lemma 2,
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Now, if we let e= 20/w o , then using P defined in

Equation 10,

2sb 2-
2sb ~ -2s , 3

2 '2 2 2
S + (s + )W

P + G=

2s 2 _ /
(S + WO2)0O (s + o2 )b

and

2 2
S + W

0 (
2sb wu b

r (P + G) -

s 2s

0 0

which is realized in Figure 7. This proves the

lemma.

We proceed with the proof of Theorem 12.

(A scalar version is found in [12]).

Consider first the case where for s = JWo0

then

S110Jo ) - -J<o (' > 0) .
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Then We form Z with elements

zij = zij + 7s6i16jl,

where 6 means the Kronecker delta.

ButZ = + ys has a zero at + jWo and a pole

s. c. The pole matrix P has a one-one element
s~2 02)(l2sb/(s + W , which was removed from i/('ll + ys),

0 1

leaving as the one-one element of Q the PR function:

2 2 2  _
s + 2bs 11

f(s) (s2  + Wo 2 ) z +  Y s)

Recall that 'll(s) is PR and has no pole at co.

The inverse of f(s) is the one-one element

of Z' which yields a series pole of value

sy/(1 - 2'yb). Note that T/(1 - 2yb) is real and

positive since it is the residue at a j-axis pole

removed from a PR function. The first realiza-

tion of this cycle is given in Figure 8.

The element -ys compensates for the ys

added to Zll. Tho above realization can be

given the equivalent network shown in Figure 9.

In case zll(jwo) = j(y/a~o) we add y/s.

Then taking account of Lemma 4 above, the final
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realization of the Brune cycle becomes that of

Figure 10.

The upper part of the diagram shows a "capaci-

tive transformer". A two-port capacitive trans-

former is equivalent to a capacitor and an ideal

transformer (see [6, p. 114]).

This completes the proof of Theorem 12.
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CHAPTER III

Generalizing the Gyration

3.1 INTRODUCTION. In this chapter the definition

and properties of the gyration are extended. It

is shown that sets of gyrations can be specified

which form Abelian groups of Drder 2n. The general-

ized gyration provides an extended basis for the

description of network parameters.

3.2 EXTENSION OF THE r OPERATOR

Suppose Y - A X1 where A is an n x n matrix,

X and Y1 are n-vectors.

Partitioning as follows

y11 l A 1 2  X11

21 2 2  J

where A is n x n, A1 1 is r x r, Xl and Yl are

r-vectors, we find by solving for X1 that if
-i

A-1 exists:

-54-
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XI - 1
l r 11 Ir A12)

SAV A2 2  3

This interchange of X and Y1is precise',11

the r operator when applied simultaneously to the

first r pivots of A. We say then that

(11)- exst 1,,,r()F l I, -A. 12) i
- 1 ,

defined whenever A exists. .r (A) is

termed an r-fold gyration of A.

Suppose we wish to perfor, an r-fold gyra-

tion on an arbitrary set of diagonal members of

A, not necessarily the first r.

If Y1 = A XI and M is a permutation matrix,

then

MTY 4 - MA M MTXJ
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Let MTY1 Y'| ,M | = X', and MTA M =A'.

Then Y', = A'X'I will be a rearrangement of the

equation yj = AXi , in which any r pivots can

be made to be the first r by an appropriate choice

of M. The r-fold gyration on the selected set

can now be performed according to the definition

given in Equation (11) which is thus completely

general.

Without loss of generality let r = 2, n = 3.

Then from the standpoint of the vectors XJ and Y,

Equation '(11) is equivalent to:

1, 2(Xl x2 x 3 yl Y2 Y3 ) = (yl Y2 x3 xl x 2 Y3 )

and it is thus clear that

(12) r',2(A) = r![r 2 (A)] = r 2 [F 1 (A) ].

Of course for r = 1, Equation (11) is consistent

with the definition of r1 given in Equations (4).

It follows from Equation (12) that Theorems

1 and 2 are true for the r-fold gyration opera--

tion.

Suppose F is a PR matrix and let G be an

r-fold gyration of F. Then Theorem 3 generalizes



to the following:

Theorem 1.3. Conditions I and Ii are necessary

and sufficient that G be the r-fold gyration of

the impedance matrix of a passive network, pro-

vided that in the parcitioningof G, the r x r

submatrix G is not identically singular.

Theorem 4 can likewise be generalized as follows.

Theorem 14. ConditionsI, II and IV are necessary

and sufficient that G be the r-fold gyration of

the impedance matrix of a network without resistors

provided that in the partitioning of G, G1 1 is not

identically singular.

It is important to note that in the above

generalizations and in the generfIizations to

follow all symmetry conditions have been completely

relaxed. The theorems will thus be fully appli-

cable to PR matrices in general, and will not be

restricted to the symmetric case.

3.3 REMOVAL OF IMAGINARY AXIS POLES FROM NON-

RECIPROCAL MATRICES

Suppose F is a PR matrix, not necessarily

symmetric. If f11 or det f 11  f12. is zero at

f 21 4,P22/
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some discrete point on the j-axis then it is clear

that the gyration matrices rI(F) or rF, 2 (F) will

have poles on the j-axis. Let these gyration

matrices be called G. Then by reasoning as in

section 1.5, we have the following generalization.

Theorem 15. Let G be the r-fold gyration of a

PR matrix. Then

G = P + Q

where P is IPR and Q is PR without poles on the

i-axis.

3.4 GROUP PROPERTIES

For the case n = 1, let

Yl 11 a 12  a 13 1fyl\ al a2 al3 X

2 21 a2 2  a2 3  2

Y3 \a31  a a.3 x3

Subject to an appropriate gyration, each of the

pairs (yl xl), (y 2 ), ' (y 3 x3 ) can be made to

lie in the state (yi xi) as in the above equation

or in the qyrated state (xi yi). Thus there are

precisely 23 or 8 distinct gyrations which can be
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defined for a 3 x 3 matrix. In case of an n x n

matrix there are 2n. The existence of all of the

2 n gyration matrices depends on the principal sub-

matrices of the matrix A. The existence of a

given gyration matrix follows only when a corres

ponding principal submatrix of A is non-singular.

Definitioti. The operation of following one

gyration by a sedond is called a cascade.

rm[rn (A)] generates a cascaded pair of operators

I' 'Fm n•

Theorem 16. Let A be an n x n matrix for which

all of the 2n possible distinct gyration matrices

exist. Then the gyration operators form an in-

volutaryAbelian group of order 2n over the cas-

cade operation.

Proof.

ri[[j(A)] = ij(A)

and so the set is closed over the cascade opera-

tion.

Let i j k be integers which lie between 0 and

n. Define r as the gyration which interchanges

none of tip (yi xi). Then



-60-

ri(rj[rk(A) ] ) = Fi[rjk(A)] = fij[Fk(A)],

and so the set is associative over the cascade

operation.

Let m b. any sequence of integers between

0 and n, without repeating.

Then Fo[Fm(A)] = Fm (A) and so F O is the

identity element of the set.

Since rm[Im(A)] = A it follows that every

element is its own inverse and so the set forms a

group with the involutary property.

Finally Fm[rn(A)) = Fn[Fm(A)] and so the

group is Abelian.

This completes the proof.

The group can be symbolically displayed by

the use ofc a hypercube of dimension n.

Let n = 3; then the cube is 3-dimensional

and can be thought of as lying in the first

hyper-octant of an orthogonal triplet of axes

a,bc. (See Figure 34 ).

The gyration matrices can be associated with

the corners of the cube as follows.

Suppose m is an ordered string of integers

without repeats chosen from 1,2,3 or n = 0.
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Then m(A) is a gyration matrix which is one

of possibly 8 distinct matrices. If m includes i,
then the i-th pair (yi xi) is interchanged and so

the i-th coordinate is given the value 1 in the

a,b, c space. The following table shows the re-

lationship between r (A) and its coordinates in

the a,b,c system.

TABLE I

GYRATION MATRIX COORDINATES

a b c

Fo(A) 0 0 0

r1 (A) 1 0 0

r 2 (A) 0 1 0

r3(A) 0 0 1

FI, 2(A) 1 1 0

rl,3 (A) 1 0 1

r2, 3 (A) 0 1 1

rl,2,3(A) 1 1 1

Figure :34 shows the location of p (A)

and its coordinates.
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The operators themselves can be associated

with spatial directions in the a,b,c space.

F1 will change any matrix from its given

form to a new form alonq an edqe parallel to the

a-axis.

F2 operates parallel to the b-axis and r3

parallel to the c-axis.

As an example r3 (A) has position coordinates

(0,0,1). The F1 operation gives

rI[r3 (A)] =FI 3 (A)

which has coordinates (1,0,1) and is given by a

,ove along the "a" direction.

Crossing the diagonal of a cube face is

associated with a 2-fold gyration. There are

three 2-fold gyrations associated with the three

planar senses of the cube faces. Crossing a major

diagonal of the cube is associated with the 3-fold

gyration. The 3-fold gyration is equivalent to

matrix inversion in this case, and so each of the

gyration matrices is faced by its inverse at the

opposite end of its corresponding major diagonal.

Starting with a given matrix A, we may or may

not be able to perform al1 of tfe 2n gyrations
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-i

possible, depending on the existence of A-l. Thus

the group may or may not be complete.

Theorem 17. For a given matrix A the group of

operators is complete if and only if every princi-

pal submatrix of A i6 non-singular.

Proof. Suppose the group of operators is complete.

Then it is possible starting from A, to move either

along an edge, across the diagonal of a face or

across a major diagonal of the cubci and thereby to

arrive at any other corner of the cube.

Hence, every principal submatrix of A must

be non-singular.

Conversly suppose every principal submatrix

of A is non-singular. Then by Equation 11 every

die of the 2n operators is defined.

This completes the proof.

3.5 APPLICATION TO NETWORK THEORY

Suppose a passive network gives rise to an

impedance matrix Z(s). Then Z is PR. Let it be

of degree d and suppose that at s = s the rank of

its hermitian part is r. If all of the principal

minors of Z(s ) are non-zero, thpn from Theorem

17, every yration matrix is defined at so. It
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follows that a complete hypercube can be drawn

whose corners are associated with Z(s0 ), its in-

verse Y(S ) and all of the gyration matrices

Fm[Z(so)1 . Each of these matrices is PR, of

degree d and has a hermitian part of rank m, a

result which follows from Theotems 1,2 and the

corollary to Theorem 9.

if any of the principal submatrices are

singular at so, but not identically so, then the

appropriate gyration matrix has a pole at so. (It

is this property which underlies all of the syn-

thesis theory developed in Chapters 2 and 4).

If any of the principal submatrices are

identically singular, then that gyration matrix is

not defined and the cube is incomplete.

Consider the following examples.

Example 1

A scalar z = s2 + 1
s

The hypercube is 1-dimensional and has two

corners, one at the orgin and one at the point 1,

together with the joining edge. It is complete.

(See Pigure 35)
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At the origin is z with poles at s = 0 and

s = oo, zeroes at +j and a hermitian part which

is zero on the j-axis. z is PR and of degree 2.

At the point 1 lies y = z which has poles

at +j, zeros at 0 and oo. y has a zero hermitian

part en the j-axis, is PR and of degree 2.

Example 2.

Z = s1

Z is IPR, degree 1, and the 2 x 2 matrix Z

is identically singular but its 1 x 1 principal sub-

matrices are non-singular, although zero at s = 0.

The 2-dimensional hypercube is thus degenerate

and is shown in Figure 36. It contains only two

edges and the three points (0,0), (1,0) and (0,1).

At (0, 0) lies Z. At (1, 0) lies

1 )1

rl1(Z)=
1 0
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which has a pole at s = 0, is IPR and of degree 1.

At (0,1) lies

0 1

p2(Z)

with the same properties as Z.

1= , 2(Z) is not defined.

Example 3.

A unity turns ratio, ideal transformer is certainly

PR but has no impedance or admittance matrix. It

is defined instead by the hybrid equation

The inverse of the hybrid matrix exists,

but its 1 x 1 principal submatrices are both

singular and so a 1-fold gyration is never

possible. Hence only two corners and the con-

necting diagonal of the 2-dimensional hypercube

exist. The degenerate cube is depicted in
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Figure 37 . The impedance and admittance matrices

are undefined. Both existing corners are associ-

ated with an IPR matrix of degree 0 with a null

)4ermitian part.

Example 4.

Consider the null matrix (0 0): IPR of degree 0.

If this is regarded as an impedance matrix then it

is realizable by two short circuits, No gyrations

are possible and so the two-dimensional cube de-

generates into a single point at (0,0).

As an admittance matrix it is realizable by

two open circuits, and has a degenerate cube con-

sisting of a single point at (i,i).

As a hybrid matrix rI(Z) it is realizable as

a short across port 2 and an open circuit in port 1.

This follows from the fact that in this casei 1 (0 0c )v1 1
= = rl(Z)

As the hybrid r 2 (Z) it is likewise realized by a

short and open circuit. In the last two cases as

in the first two the cube degenerates into the
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single points (1,0) and (0,1) respectively.



CHAPTER IV

General PR Immittance Matrix Synthesis

4.1 INTRODUCTION In this final chapter the

gyration operator is used as the basis for a

general synthesis procedure for PR immittance

matrices. The synthesis procedure derived in

Chapter II is a special case of this general pro-

cedure. In this chapter the symmetry condition

is not however, required and both non-symmetric

and symmetric matrices can be realized by this

general procedure.

4.2 COMMENTS ON THE DEFINITION OF A PR MATRIX

Let F(s) be a matrix function of thecomplex

variable s all of whose elements f.. ,are rational

with real coefficients.

F can be split into the sum of two matzices

F F H + FSH

where FH is hermitian and FSH is skew-hermitian.

This follows immediately from the identity

- v9-
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F + FT* F - FT*
F +

2 2

Letting

F + F *

FH 2

we see that F H = F * and is thus hermitian.
HT

Similarly if

F F T
FSH 2

then FSH F and is thus skew-hernmitian.teFSH ,SH T

Condition II of the definition of the PR property

for matrices requires that Re X*Fx -1 0 for

Re 5 L- 0 and arbitrary xT. Now

*Fxl = *F HX + !*F sHX

= a + jo

where a and jp are real and pure imaginary since

they are hermitian and skew-hermi. Lan forms re-

spectively. Hence II may be restated as
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II The hermitian part of F is non-negative

definite for Re s - 0.

IIa, IIb and IIc can be restated as

Ii1  FH is non-negative definite for Re s = 0

~1 f) has no poles for Re s > 0

i,j = 1,2, . . . n.

II c For Re s = Qf. has simple poles and
C 1)

the matrix of residues is hermitian non-

negative definite.

Likewise IV is equivalent to:

IV A positive real matrix F is said to

be IPR if on the line Re s = 0, F is

everywhere skew-hermitian.

Thus the rank of the hermitian part of an IPR

matrix is zero everywhere on the j-axis.

As will be seen later, this restatement of

the PR property in matrix terms rather than the

scalar terms previously used will be advantageous

under certain conditions.
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4.3 SYNTHESIS PROCEDURE

In what follows we develop a synthesis pro-

cedure, using the r operator, ;hich is capable

of handling any PR immittance matrix. As will be

shown, any such matrix falls into precisely one

of two classes and accordingly the procedure will

have two variants, termed Case A and Case B. Case

A will be shown to be a generalization of the pro-

cedure already given in Chapter II for symmetric

matrices and will handle all symmetric PR as

well as some non-symmetric PR matrices. Case B

will cover all remaining PR matrices.

Suppose we are given a PR impedance matrix

which is to be realized. As a first step, all

imaginary axis poles are removed by splitting the

matrix into the sum of pole matrices and a re-

mainder which has no j-axis poles. All of these

matrices are PR and the pole matrices being IPR,

can be readily synthesized by inspection using

inductors, capacitors and possibly gyrators to-

gether with ideal transformers.

Assume now a PR impedance matrix Z without

j-axis poles. As discussed in section 2.3, by
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removal of resistance from each port or from just

one port a situation is reached where the herm-
A

itian part ZH becomes singular at some point on

the j-axis say jw 0. In Lemma 5 below it is shown

that there exists a congruence transformation

which, at s = jao , places a zero in the 1,1
A

position of ZH or else places a singular 2 x 2

submatrix in the first principal p.sition of ZH.

Lemma 5. Let F be an n x n matrix which is not

identically singular and has no j-axis poles.

Let F be PR and let FH (j 0) be singular.

Then there exists a real, constant non-

singular matrix D such that either

i) DTFH(JW0o)D has a zero in the 1,1

posicion (Case A).

or

ii) DTFH(jwo)D has a 2 x 2 submatrix in the

first principal position which is

singular (Case B).

Proof. F (JOW ) is singular by assumption. Two

cases arise. Either Re FH(OW0o) is singular (Case A)

or it is not (Case B).
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Case A FH and Re FH are singular at jw 0. There

exists D, real and non-singular such that

DTRe FH(JOW )D is diagonal and has a zero in the

l,l position. But FH = Re FH + j Im FH and Im FH

is skew-symmetric, a property which is preserved

under congruence.

Hence DTFH(JW )D has a zero in the 1,1 posi-

tion. This proves Case A.

Case B Re F H(J 0) is non-singular. By the PR

property of F, FH(J0no) is non-negative definite

(Condition II , section 4.2). Hence

X*FH (jco)x1 = 7 *Re FH(JOWo)XJ + jx*im F H(wo )X4 -a 0

for all X-.

In particular, for all real - since Im FH(Jq)

is 3kew-symmetric,

xIm FH (Jw )xl = 0

giving

3Re F (ja)o )xI ' 0

Hence Re FH(jc0o) is non-negative definite and

since Re FH(J wo) is non-singular by assumption, it

is in fact positive definite. Thus there exists
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a matrix Q which is real and non-singular such

that

QTRe F H (jo) Q =I

Let

QT Im F H ( j wo ) Q = N, say

where N is real skew-symmetric. It is shown in

Appendix 2 that there exists an orthogonal matrix

V such that if the real skew-symmetric matrix N

is of even order then VTN V =

-i 0

I 0 I 2  0

!0I

IP

0 0 4n

;-Pn 0

and if N is of odd order, then V TN V =

TM
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0 i'Ll

0 0

4---------S0 2 0
I 02
I I
I I

0 0IL 0 I

~0

I 1

n

!0

In either case some of the t may be zero. Taking

D QV, we obtain D ?H wo n)D

-XL1

L L

ni

,---L 1

* n

4!
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(assuming that n is even), which has ones in

every diagonal position.

But F (JO ) is singular. Hence for some k,

(1 k 1Pk,

is singular. Without loss of generality, let this

be true for k =. Then DTF H(Jw0)D

TH 0

-j 1

tnIII

-jp 1 1
-

0 '1 I
I '

which proves Case B, and completes the proof of

Lemma 5.
o I n



r

-78-

A
Thus after ZH has been made singular at JWo

by the removal of resistance the matrix is found

Ato fall into Class A (all th6se for which Re ZH

is also singular at jw 0o) or Class B (those for

which Re H is positive definite). We observe

that all symmetric matrices immediately fall into

Class A since for them the hermitian part is real.

We now apply the appropriate congruence

transformation, as given by Lemma 5 and we can

thus assume without loss of generality that

AD TZ D = Z

has either a hermitian patt whose 1,1 element

is zero or else it has a hermitian part whose

first principal 2 x 2 submatrix is singular at

This congruence transformation by D, can be

compensated for by also applying the inverse

congruence transformation, the latter being real-

ized by the appropriate use of ideal transformprs

as discussed in (6].

Thus far, the synthesis procedure has re-

sulted in the network of Figure 12

r
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4.4 CASE A SYNTHESIS

Assume Z to be an n x n PR impedance matrix,

without j-axis poles, with 'Hll(Jo) = 0.

If Z is identically zero, we have the following

Lemma 6. Let F be an n x n PR matrix with fll = 0

identically. Then
SI I -

f F 0 ai I 1

i IF -- --- ----

I I

F2 11 I' F22  -al F 22

where a is a real constant row-vector, and F2 2

is PR.

Proof. F2 2 is PR since it is a principal submatrix

of a PR matrix. F H is hermitian non-negative

definite for Re s - 0. Since fll = 0, we must

have

F 1 2 + (F2 1 ) = for Re s -0

Let s be real and positive. Then (F2 11)* = 211-

Hence F1 2 + (F2 10)T = for s > 0, and so

F12 = -(F 2 l )T for all s.

We then have, F - i= for Re s - 0.
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Let s be on the j-axis.

Then F1 2 - i= implies that F12 is reel on

the entire j-axis.

Hence FI2 = a a real constant n-i vector.

This completes the proof of the lemma.

Z is identically zero, we may by Lemma

6, split Z intoIo
-c4 "Z 22

The first of these two matrices can be realized

by a gyrator and ideal transformers (see later)

and we then resume synthesis on 22. Thus we may

assume without loss of qenerality that ill is

not identically zero.

Suppose next that E is identically zero
Hll

on the j-axis. Then z11 is IPR, and since it

cannot have poles on thej-axis, (these have all

been removed), ']i must be identically zero. But

this has already been ruled out. Thus we mey

assume that HI is not identically zero on the

j-axis.
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Suppose finally that Z or one of its princi-

pal r inors is identically singular. We then have

Lemma 7. Let E(s) be ' PR matrix which is identi-

cally singular. Then F is congruent to

where W is a PR matrix and 6 is a real, constant

row-vector.

Proof. Take s 1. Let F(l) = M + N where M is

real symmetric and N real skew-symmetric. Let

C be a real constant, non-singular matrix.

Then CTF(l)C = C TM C.

But C TF(l)C is singular. Hence so is M. Choose

C so that

TMI

Then [CTF(S) C]1 1 has a zero in Re s>0. But

this implies that [C F(s)C1I i = 0 identically
T

since it is PR.

Hence by Lemma 6
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0 a

C(s)C= ----.
T

-al w

where W is PR and a is a real and constant row

vector. This completes the proof of the lemma.

Corollary. If F is PR and identically singular,

then F H is identically singular.

Proof. There exists a non-singular C such that

CTF C => 7
Hence

0

F = 7H T

( l WH

which proves the assertion.

Thus we may assume that none of the principal

submatrices of Z" is identically singular, since

if this were the case, we can apply a congruence

transformation, remove a gyrator section and

resume synthesis of the remainder.
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Without loss of generality, then, Z is an

n x n PR impedance matrix, without j-axis poles,

no principal submatrices identically singular,

SH11 is not identically zero on the j-axis and

zHl I = 0 at Jo.

By Theorem 17, every one of the possible 
2n

gyration matrices is defined for Z.

Following the classical Brune tradition [12]

1
we now add a scalar b = sL or1-to Z 1 so that

Zii + b is zero at jW0" if w0 = 0 or c then

z Hl(jwo) = 0 implies "1 l(jwo) = 0 and so b = 0

in these two cases.

Define b

Then z11 (juo) = 0 but zll is not identically zero.

Z has no j-axis poles; it follows that Z has

only the j-axis pole possibly due to b. If

0 < W oo , then Z has at most one j-axis pole

in only z11 and this pole is either at 0 or oo,

depending on b. On the other hand if wo0 = 0 or

oo then b = 0 and so Z then has no j-axis poles.
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We are now in a position to reduce the degree

of Z by the removal of a lossless section.

4.5 STATEMENT AND PROOF OF CASE A THEOREMS

Theorem 18. Let Z(s) be an n x n PR

impedance matrix,

a) with no identically singular principal

submatrices,

b) without j-axis poles,

c) with 'HI not identically zero on the

j-axis, and

d) H =H 0 at jw.

b0

Let Z = Z + w1 -e the IPR scalar b is

so chosen that z 1 1 (JW) = 0. Then Z may be de-

composed in the series parallel manner of Figure

1 where

1. Z' is PR and 6Z' = 6Z - 6Z"

2. Z" is IPR and 6Z" is 1 or 2

3. Z" contains at most 2 reactors and 1

gyrator plus ideal transformers.

e~
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Since z11 has zeros at +jW0 1 rI(Z) has poles there.

rI(Z) is PR. Hence by Theorem 15, FI(Z) can be

split into an IPR matrix P, formed by the re-

moval of the poles at +jwo from rI(Z), plus a

matrix Q = rI(Z) - P which is PR without poles

at 4jCU .

As will be shown under the proof of Pro-

position 3, p11 is not identically zero and so

zoo = r1 (P) exists.

Suppose qll is identically zero. Since P1l

is IPR, it has a real part which is identically

zero on the j-axis. It follows from the corollary

to Theorem 9 that z11 = F(P 1 + qll) also has a

real part which is identically zero on the j-axis.

But this contrary to assumption c in the

statement of this theorem. Hence qll cannot be

identically zero and so Z' = FI(Q) exists.

By Theorem 2, both Z' and Z" are PR. Since

P and Q share no poles it follows from Equation 1,

that 6(P + Q) = 6P + 6Q. By Theorem 1, the degree

is invariant under a gyration, so

"6Z = 6(P + Q) = 6Z' + 6Z".

Hence 6Z' = 6Z -6Z"
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We shall refer to these as propositions 1, 2,

and 3 respectively.

This theorem is the basis of the Case A pro-

cedure. In order to compensate for the addition

of b(s) we must also add -b(s) to zll. It turns

out, analagously to the scalar case, that this

subsequent negative element can be incorporated

into a perfectly coupled transformer. This is

proved in

Theorem 19. Let Z, Z and b be as defined in

Theorem 18. Then after the application of that

theorem to split Z, it is always possible to in-

ccrporste the compensating negative reactor into

a perfectly coupled transformer.

Proof of Theorem 18.

Pro2osition 1.

Form F1 (z) = (zll)-1(1) (l - 1 2)

' 22
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This completes the proof of Proposition 1.

Prior to proceeding with the proofs of the re-

maining propositions we make the following ob-

servation.

Let G be a real skew-symmetric n x n matrix.

Then both G and - G have a non-negative definite

hermitian part and so they are PR. Thus P + G

and Q - G are also PR and it is thus permissible

to split rI(Z) into P + G and Q - G. Since

6G = 0 it follows then that all the arguments

given in the above proof of Proposition 1 are

equally valid if Z" = I(P + G) and Z' = -(Q G).

G will be used to a definite advantage in the

proof of Theorem 19 to follow.

Proposition 2.
Let U = (zl)l)(l -12)

First let 0 <o < oo

Then the pole matrix removable from rI(Z) is
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(s - jW0o)U (s + jw0  Is=)u
_s=j_ 0  1 s=-j 0

S- juo) S + jW0

V +*
- + j O  say.

Now U is of rank 1. Hence the residue matrices

V and V* are of rank 1. Thus by Equation 1, P is

of degree 2, which means that by Theorem 1,

Z = r1 (P) is of degree 2. P is IPR, and so the

rank of the hermitian part of P is zero on the

j-axis (Condition IV , section 4.2)

Thus by Theorem 2, Z" is PR and by the corol-

lary to Theorem 9, Z" is IPR. Hence Z" is of de-

gree 2 and IPR.

Let 0 O = 0 or oo

Suppose for definiteness that w = 0.

(The case wo = oo can be analyzed as the dual).

Then P = U is of rank L, and so
s

P is of degree 1. P is IPR. Hence Z" = FI(P)

is of degree 1 and IPR.
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Thus for 0 0 "' - D, Z" is IPR and of degree 1 or

2.

This completes the proof of Proposition 2.

Before proving proposition 3, we prove

Lemma 8. Let F be partitioned as follows

f F11 12

F = - where f is a scalar.
_____11

F F2

Let F be PR with fill I (jwo) = 0, but not identi-

cally zero. Then

F1 2 (iJwO) = C7 + j

F 21 (J)o)l= -C4 + j-

where a and p are real (n - 1) vectors.

Proof. F H is non-negative definite on s = jw and

since fHll (jW) = 0, we have at jo0O ,

f = 0, f = 0, k = 2,3, . . . n
H lk H kl
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Thus the entire first row and column of F(jW )

have skew-hermitian syrmnetry which proves the

lemma.

Proposition 3

As before U = (zll) (1

1(l

Assume 0 < a) 0o

Then the pole matrix removable from 1 (Z) is

(s- jWo)U (s + jw0o)U

sjo0 +s=-jwo

s - JWo s + JWo

V __+V*
s-wo + s wS - j0O S + j 0O

Let V = M + jN

2sM- 2woN
ThenP= 2 2

S + 40
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I -

1 2 n., N

2s 2w
- 2 2 -

M 1 2 2  N 211 N N22

V 1 1  V12

Let V=-- - -

V2 11 V2 2

Thenv (s j 0) s say,
11 os j

:S

which is real and positive since z 1is rR.

i.e. in1  =Y and n 1 := 0.

= 1 -(s -~o 12 ~j0

Let V = '

= Y(a + j73) by Lemma 8, and so

=

12 1, 12

Similarly v211 = y(-al + jpj) by Lemma 8.



-92-

= 211 + JN211

and finally

V -(S 211
2 2 0(s - J1 Z l0

= -Y(-C4 + jf) (-a + j)

=Y[(ai" + +j) +(al a

= M22 + iN22

-a

Hence P = 2 2 .2s 1 2
s + 

wD
0 I

- cd , c c +00'

2 w 'Y 
I

-~~~ 

0 

-
.1

2 2
S +0 I

0

8 -4
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Then Z" = r 1 (P)

s + 2
00

2s7 s

2Y 0
I------------- ------- ----------2 2sY -

s + s

0

00

s 2sY3S + 2' 2 ( -l + -a)

s 2 +W S
0

s + 0j
= -- -- I ; +L. ..

I 0
I 2 UY

+
o

00

-777 ------ 2
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Thus Z" has been dplit into the three matrices

given in the preceeding equation. The first of

the three matrices of Z" may be realized as shown

in Figure 13. The second term oi Z" can be real-

ized as shown in Figure 14.

The third part of z" namely

( 2

can be realized by one gyrator and a caigruencc

transformer. This follows from the fact that is

skew symmetric, real, of rank 2. Hence there

exists a non-singular matrix V (see Appendix 2)

such that

0 1

0 a

T

-alj

which is realized in Figure 15. The overall net-

work for Z" is shown in Figure 16.
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An alternate realization for Z" is possible.

Let e be a real n-1 vector. Observe that both

0 -

G=

and -G are real skew-symmetric and hence they are

PR. Instead of splitting 1 (Z) into P and 0 we

split it into P + G and Q - G as was anticipated

in the comments after the proof of Proposition 1.

Let

0

Then
1 -a

P + G 2s^Y
2 2

-al ala +

/0 -

I0

s 2 2

O I

00

2
s W -c (al 'a)W 0

0
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Hence Z" = r 1 (P + G)

!s 2
0. ~ a +

2 sY I0

aI - -aalP
2 ssY w 0

wo w 2
J 0

+ 2 sY (at a +

w 22 "  2

0 s + 03
I0

2w 'Y-

I 2 wI 1 0
----1--- + s ---

2

04 I -+ 0

0 0

o a
T Y 2a "a

22'Y

-at

0
_ _ _ _ _ _ _ _ - -

f 0-
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Z" of the alternate realization, has been split

into three matrices. The first of these terms

is a capacitor in series with port 1 of the net-

work of the remaining terms.

The second term is a single perfectly coupled

transformer shown in Figure 17.

The third term can be realized by a single

gyrator and a congruence transformer, since it

is congruent to

3 ' 0 a 1 27
I I I 0(7 ,I I I

-l 4 !

I

The overall network for Z" is given in Figure 18.

If w = 0 or co

For definiteness assume )o = 0 (w = co can be

analyzed as the dual).

Then U = (zll) l (1 - 1 2 )
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sul
Is=O V

The pole matrix P = = - say.
ss

Ss--- I S= Y which is real

and positive.

v = 1212 s=0

But Z1 2 (O) is real. Hence by Lemma 8, Z1 2 (0) a

and Z21 (0)1 -. Thus

V1 2  -Ya

=211 -'Ya

Finally

V 2 2

Hence P ='

-ai at
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Then Z" = F I (P)

1 T 0
-!/ o ,

s I
+ I

-- al

I I

Thus Z" can be realized by a single inductor, a

single gyrator and a congruence transformer, as

shown in Figure 19.

Hence Z" contains at most two reactors, one

gyrator and ideal transformers.

This proves Proposition 3 and completes

the proof of Theorem 18.

Proof of Theorem 19.

We recall that Z was partitioned as follows

z11 ' 12

Z21  : 22

where Z11 is a scalar.

Then since z(Jw°) = 0, we have
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11 o )  jT)

where T) is a real constant.

Let 0 < w < co0

If 7 > 0 let B= (
SI *I

sD

If 7 < 0 let B = - --
W

If 1 
= 0 let B = b.

If co0 = 0 or oo

Then n = 0. Let B = 40.

In each of the above cases the matrix B is PR.

Recall that Z = Z + B. Then Z is PR and

Z1 1 (jCo) = 0.

Case 1 Z~l(jU0 ) =j0 7 > 0.

11)

Thenz z + -° has a zero at w and a

pole at the origin.

2sY hc ssbrce
Recall that p1 1 = 2 2' which is subtracted

s + W0o
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from - leavingZll

_ =i 1 2sYqll - F(Z) -pill CoU s 2 2
1.1 2 2z. + 0

3 2 2s2 I -^
s + sw O Yz11  2sYwO)

s2  2 -(2 2) (0Sll + W O)

[ece z' 1 yields a pole at s =0Hence ll [1(Z) - Pill

2

of value o
s(W 0 - 2'y)

Since z is PR and T) > 0, we have that

1 >0

° - 271

Inverting p11 gives
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2
z - -- 0 + s

i1 2sY 2)'

and utilizing the alternate relization for Z"

(Figure 18Y we obtain the network of Figure 20

where the series capacitor -w / s is the com-

pensation for adding

1 ,

B W°D +
s i

to Z. Now the three capacitors of Figure 20 can

be combined into a three-terminal network

/ 2 0
2 sy s 2 sY

2 
2 2

2sY 2 sT s(W 0 - 271 )

1 7T -
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W% -2^Y 1

2 0

0
2sY

(V

- 2-Y-q

T is PR since (o - 2'T >0, and 0 <wOo < co

Moreover T is of rank 1, and is therefore of de-

gree 1. Thus T may be realized as shown in Figure

21 by a single capacitor plus an ideal transformer.

This gives us the realization of Z shown in Figure

22.

Case 2.

ll(JC o ) = OT 0 < 0

Thensz = _ has a zero at a) and a pole
11 11 0 0

at oo.

qll = [fr(z) - P]1 1. Hence,

1 1 2s-Y
Zll [r I (Z) - T- 1 i -O  s + W 2

(2 2) s)
(s+ 0 ) (o11 - s)

2 32
00s + 2sYZllo + 202

-. -.- -
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which has a pole at co given by

-sl-

W 0 + 27 rl

Since this term is Pr and rj < 0, we have that

W0 + 27Y > 0. From Z" we obtai the pole at co
0

of value s/2'Y (see the proof of Proposition 3

of Theorem 18). The three terminal matrix T is

W 2-Y 2Y

T=

s s2
2Y 0 + 2 +2Y

0 +

CD~

0

2, 
0

1 0 + 2

which is PR since 0 + 2 0 and 0 o<w0 <00.

.Ir - ~7 --no......
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Again T is of degree 1 since it has rank 1. T is

realized by the three terminal network of Figure

23 which is a single inductive element, and Z is

realized by Figure 24. This completes the proof

of Theorem 19.

Prior to commencing with a discussion of Case

Bwe make the following observations.

1) Referring to Figures 22 and 24, either

2 1

° - - 2y

or

zg + n
W + + 2Y I

now remain to be synthesized. If wo 0 or c

then Z' remains. The cycle is now resumed by

splitting off any j-axis poles followed by a re-

A
moval of resistance until a new Z is produced

for which ZH is singular at some point on the

j-axis. Either a Case A or a Case B cycle now

commences.
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2) We note that a buffer of degree 1 or 2

was removed 4rom Z resulting in a degree reduction

of 1 or 2. Thus the Case A cycle is minimal in

the sense of Tellegen's Minimal Theorem stated in

section 2.3. As will be shown later, the Case B

cycle reduces the degree of Z by 2 with the re-

moval of a buffer of degree 2 and so it is also

minimal. Thus a given matrix of degree d will be

synthesized, by this method, by a network contain-

ing precisely d' reactive elements.

3) We note that at most 1 gyrator appears

in the buffer for a Case A cycle, whether the de-

gree of the buffer is 1 or 2. We will show that

at most one gyrator is required per unit degree

reduction.

4.6 CASE B SYNTHESIS

Assume that

11 12

- I
Z=

Z21 ' 22

7-
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is an n x n PR impedance matrix. ZI is 2 x 2.

Let Z have no j-axis poles, and assume as in Case

A that none of the principal submatrices of Z is

identically singular. Since Z falls under Case

B, then ZHI (Jw ) is singular, but Re Z H (0 )

is positive definite. This immediately means

that w0 j 0 or oo since at those points Z is real

and so ZH (w 0 ) is real and singular, which im-

plies that a Case A synthesis is possible. Sim-

ilarly ZN cannot be identically singular on the

j-axis since then it is singular at w0 = 0 and oo

A case A synthesis is then also possible.

Thus we may assume without loss of generality that

for Case B, Z is an n x n PR impedance matrix,

without j-axis poles, with no identically singular

principal submatrices, Z Hlnot identically sing-

ular on the j-axis, ZH (J 0 ) singular, Re ZHI I0

not singular and 0 < w0 < oo.

We now follow a procedure similar to the

Brune method, and add to Z1 1 a 2 x 2 matrix B(s)

such that Z 1+ B is singular at jw 0. The exist-

ence of such a matrix is guaranteed by
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Lemma 9. Lot Z be a 2 x 2 PR matrix with

Z 1 1 (jD O) = C + jD - j(E + jF) where C and E

are real symmetric, D and F are real skew-

symmetric and where C + jD is positive semi-

definite (i.e. singular) but C is non-singular.

Then there exists a 2 x 2 PR matrix B(s) such

that

i) Z1 1 (OW0 ) + B(jw0 ) is singular

ii) B(s) can be realized by at most 1 in-

ductor, 1 gyrator and 1 ideal transfurmer.

Proof. Let B(j)u ) = j-A(C + jD) + j (E + jF) where

'A is as yet unspecified. Then

Zll1 O ) 0 + B(j O) 0 (1 + j?,)(C + jD)

which is singular as required by i) of the lemma.

To give B(s) the properties required by ii) of the

lemma, ? is chosen as follows. C is non-singular

by assumption. Since Z is PR, C is also non-

negative definite. Hence C is in fact positive

definite. Thus there exists a real, non-singular

N such that

4,-!
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C = NTN and E =NT N.

Then

? C + E = N T '  +N

0 N.

Suppose that p > q
'p-q o)

Take ? = -q. Then NC + E = NT N

c 0

which is positive semi-definite.

Take B(s) = s__ (?,C + E) - (?\D + F). Then
0

B(jco ) = jN(C + jD) + j(E + jF)

as required by i). Moreover B(s) is realizable

by a gyrator, a single reactor, (since XC + E

is positive semi-definite) and ideal transformers

as shown in Figure 25. Thus ii) is satisfied.

Suppose p< q

Take X = -p and follow the above argument. We
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again obtain a B(s) which satisfies i) and ii).

suppose p = q.

Take ?\ - p. Then ?C + E is a null matrix. Let

B(s) = -(ND + F).

Hence B(jw = j(C + jD) + j(E + jF) as re-

quired and B(s) is realizable by a single gyrator.

Thus in every case B(s) e.X.sts which satisfies

i) and ii) of the lema.

This completes the proof.

We conclude from this lemma that B(s), a

2 x 2 PR matrix, can be found, whose addition

makes Z11 (Ow0 ) singular. This is an extension

of the Brune procedure, and following the Brune

tradition, B(s) will be compensated for at a later

stage by the addition of -B(s), which, as will be

shown, can be incorporated into a Pr network.

Let

Z = Z + - - - -

Then Zil(jw,0 ) is singular but Z is not identi-

cally singular. Since Z has no j-axis poles,
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Z has only the j-axis polcs contributed by B,

and these occur only in Z I. Since

B = -(IC + E) - (QD + F), if ?%C + E is not the
0

null matrix, Z has a rank 1 pole at oo, and if

?C + E is null, then Z has no poles. We are now

in a position to reduce the degree of Z by the

removal of a lossless section.

4.7 STATEMENT AND PROOFS OF CASE B THEOREMS

Theorem 20. Let Z be an n x n PR impedance

matrix

a) without j-axis poles

b) without identically singular principal

submaLrices

c) ZH not identically singular on the

entire j-axis

d) ZHI (jw 0) singular

e) Re Z H (O 0) not singular and

f) 0<W <cO.0

-u- - - - - - - - - u - - - - - - - _ _ _ _ - -
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B I 4

'-' I
Let Z = Z + - - where B is IPR, 2 x 2 and

so chosen by Lemma 9, that Zl (J 0ao) is singular.

Then Z may be deccmposed in the manner of Figure

26 where

1) Z' is PR and 6Z' = 6Z - 2

2) Z" is IPR and 6Z" = 2

3) Z" consists of an inductive portion of

degree 2, at most one gyrator plus ideal

transformers.

We will refer to these as Propositicns 1, 2, and

3 respectively.

This theorem is the basis of the Case B pro-

cedure. In order to compensate for the addition

of B(s) we must also add -B(s) to ZII. It turns

out, analagously to the scalar case, that this

subsequent negative matrix can be incorporated

into a PR 6-terminal network. This is proved in

Theorem 21. Given Z, Z and B as defined in

Theorem 20 and Lemma 9. Then, after the application

of Theorem 20 to split Z, it is alwa.s possible to
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incorporate the ccmpensatinq -B(s) into a PR net-

work. Proof of Theorems 20 and 21 now follow.

Proof of Theorem 20.

Proposition 1

Form I 2 (Z) = 12 (1 2

1,2 (2 ) 1 1  21

+

¢ z22

Since Z is singular at +jw0, r 1 , 2 (Z) has

poles there. By Theorem 2, F 1 2 (Z) is PR.

Hence by Theorem 15, F1 ,2(Z) can be decomposed in-

to an IPR matrix P, formed by the removal of the

poles at jw0 from f 1 , 2(Z), and a matrix

Q r 1 , 2 (Z) - P which is PR without poles at

Partition P into P I P12 where PI

1 P2P21 22
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is 2 x 2. Do likewise for Q. As is shown below

in the proof of Proposition 3, Pll is not identi-

cally singular and so Z" = FI, 2 (P) exists. QII

cannot be identically singular, for suppose it is.

By the corollary to Lemma 7, QH is then identi-

cally singular. Since P is IPR it follows that

the hermitian part of (P11 + QII) is singular on

the entire j-axis. Hence by the corollary to

Theorem 9, Zll = r1 , 2 (P1 1 + Q11 ) has a hermitian

part which is singular on the entire j-axis. This

contradicts assumption c) of this theorem. Hence

Qil cannot be identically singular and so

Z =1 1,2 (Q) exists.

By Theorem 2, both Z' and Z" are PR. P and

Q share no common poles. Hence it follows by

Equation 1 that

6(P + Q) = 5P + 6Q

But by Theorem 1, the degree is invariant under a

gyration, so

6Z = 6P + 6Q = 6Z' + 6Z"

It will be shown below, in the proof of Proposition
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3, that &)Z" = 2. Hence

6Z' = 5Z - 2

This completes the proof of Proposition 1.

We make the following observation. Let G be

a real skew-symmetric matrix. Then both G and - G

are PR. If instead of splitting F 1,2(Z) into P

and Q, we split it into P + G and Q - G, then

both P '- G and Q - G are PR.

If we choose G so that it has the form

G -I where F is (n - 2) x (n - 2) then

by the same arguments as in the proof of Prop-

osition 1, P11 and Q are not identically sing-

ular. Hence Z" = r1,2(P + G) and Z' = r1,2(Q - G)

will be defined, PR and of the same degrees as

in Proposition 1. G will be useful in Proposition 3.

Prior to proving Proposition 2, we prove

Lemma 11 Let M be a 2 x 2 matrix. Let A and

B be 2 x r matrices. Then
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N 2 M (12 B) has the same rank as M.

E iET

Moreover if A = B and M is hermitian positive

semi-definite, then N is hermitian positive semi-

definite.

Proof Let M (s1) where 'i and rn2 are

2-element row vectors. Then

i_ M = m = K say where the a. are linear
21 1

1112
AT

a
1

a 2

a
r

combinations of m and m 2 " Let K = (kl! k 21)

where k14 and k2 are column vectors of order r+2.

Then K (I2 B) = (k l| k2I bl| . . .*b r ) = N

where the bi are linear combinations of kl4 and

k2{. Clearly the rank if N equals the rank of K

and the rank of K equals the rank of M.
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This proves the first part of the lemma. If A = B,

let Q I -A Then Q is non-singular.
2 I

Sr)

Hence N is congruent to

QT*N Q MT|

which completes the proof of the lemma.

Proof of Proposition 2

Recall that 0< a o

Define U = 12 ZI -Z2)

z 2

Z ll(jc o ) is a singular 2 x 2 matrix. Hence its

rank is zero or i. If its rank is zero, then

z11 (jwo ) = 0 and a Case A synthesis is possible.

Thus we may assume that Z11 (JW0 ) is of rank 1.

The residue matrix at s = jw is
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V = (s - j( 1) ) U ls = 9 w0

s - jW °  12 adj Z11 (12 -Z12)
det ZI

s2=)a O

Since Z is 2 x 2 rank 1, adj Z11 has rank 1. It

thus follows by Lemma 11 that V is of rank 1.

The pole matrix removable from r1 ,2 (Z) is:

(13) P = V + V
s- jW s +j

which is thus of degree 2. Moreover P is IPR

by Theorem 15. It therefore follows, by Theorems

1 and 2 and the corollary to Theorem 9 that

Z1 = F 1 ,2(P) is IPR and of degree 2.

This proves Proposition 2.

Proposition 3.

The residue matrix at s = Juo in rl, 2 (Z) is

(s - jO) 12 adj ZII (22 -Z12
V = det Z 1 1  .

)Z2 1 2 s--w00
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which is rank 1, as was noted above in the proof

of Proposition 2. But V is the residue matrix

at a j-axis pole of a PR matrix. Hence V is

hermitian non-negative definite by condition
1

II c, (section 4.2). Partition V into

V V V
11 I 12

V21  22

where V1 1 is 2 x 2. Then V is Also hermitian

non-negative definite. Since

(s - jW0 )
V11  det ZI adjZ 1

s=jO 0

and since Z is 2 x 2 rank 1, it follows that VII

is in fact hermitian positive semi-definite and

must therefore be of the form

a11  a1 + Jl

a12 jb12

a12 - J1 2 a 12a 1
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where all> 0. Moreover b12 / 0 since if

b12 = 0, then Z1 l(jW 0 ) is symmetric and singular

and so a Case A synthesis is possible.

Having established the form which VI1 must

have we now determine the form of V. Let C and

D be real 2 x n- 2 matrices. If we take

V = _2Ial al + Jb2 (I, C + j D)
11b2 12  (1jD

CT a 2 + 2

-jDT a12 - jb1 2

then V is hermitian, and by Lemma 11, it is posi-

tive semi-definite, rank 1 as required. Let

a1 1  a 1 2 + Jb 1 2

a1 2 - Jb1 2  al

Then expanding the above form for V we obtain

W WC + jWD

V- CW CTW C + DTW D
TI T T

jDTW + jCTW D - jDTW C
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Recall that P(s) = +
s - j0O s + jW 0

(see equation 13)

Let V = M + jN

2sM - 2) N
Then P= 0

s2 2
0

Letting

sa1 1  sa1 2 - ob 12

K=

a 2 + b 2
sa1 2 + wob12 ( 2 a 12

at. d

Woa woa + sbi
oil1 ol12 12

L=

a) a b (1)( a 2 + b1

oa 12 - 12 0 2

we obtain

K KC- LD

CmK I K C + DTK D
T T

2 +DTL - L D + DTL C
(14) P2 +W2

- - 7~~~- -s +- - - - - - . -- - - - - - - --
2

- - - - -
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P P
11 1 12II --

= __

P I P
P21 22

We now add to P the matrix j

I, I

where F is real, skew-symmetric (n - 2) x. (n - 2). 1
As noted in the comments after the proof of Prop-

osition 1, the addition of this matrix to P can I
be offset by subtracting it from Q. Then

2 11 2~ P1 2)- 4

P2 1 4 P22 +

which yields
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(15) '(a 12 b 2

a 1  -a 1 2

~2 -a 1 2  a 1 1

o a) 0
2b '11

0
-t2b, 2  0 I

where

a 2b2

b 1221

k11l a 1 2

is a real 2 x n-2 matrix.



-124-

The first part of Z" consists of a non-singular

inductive matrix of degree 2 since a,, > 0 and

b12 0. Hence this section of Z" can be real- j
ized by 2 inductors plus a congruenze transformer.

By the appropriate choice of F, the second part

of Z" can be realized by 1 gyrator plus a congru- 5
ence transformer. To see this, suppose-first

that M =(Mi)is of rank 2 and without loss of gener- ,

m 

Wp
ality let 2b12  Let F = mli - m2 1.*

0m I

Observe that F is a skew symmetric real

(n - 2) x (n - 2) matrix as required. Then the coA- J
stant part of Z" is congruent to

0 11 m'

HT -1 01 mn Hm a .

-1 0
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where

1 0 m ~2

H 0 1

Thus the constant part of Z" can be realized by 1

gyrator and ideal transformers. On the other hand,

if M is of rank 1, i.e. M = ( i\ then letting F

be the null matrix yields the resul't that only 1

gyrator plus a congruence transformer is required.

This completes Proposition 3 and Theorem 20.

The connections of Z' and Z" will be discussed in

the proof of Theorem 21 which now follows.

Proof of Theorem 21

As required for a Case B synthesis ZHl (jw0 ) was

a singular 2 x 2 matrix where 0- < 0o

We then added B(s), a 2 x 2 matrix, chosen

according to Lemma 9, such that

B(s) =s (%C + E) - (XD + F)
0
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has a real sjmmetric part XC + E of rank 1, a

real skew-symmetric part XD + v and has the

property that 21i + B is singular at s i% 0

Now r, 2  +(- 1 - ) (Z 1  

+ B ) -1

-l l

,2

Hence ( B - PI] where P is the

T

pole matrix in r 2 + at o (see

Equation 14). i.e.

Z11 = (Zll + B)[ I P1 1 (Zll + B)]

From Equation 14, we see that near s = ro,

.2API = 7 ,where

a11  a12

A=

2 + 2

12 a1 1
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is positive definite since all> 0 and b 12 0.

Moreover, Z (and hence ZII) contains no j-axis

poles by assumption. Thus neAr s = co,

1+ B 2 A(XC + E)
0

and it follows then that Z' has a 2 x 2 pole at co
11

given by:

M2X E A(>,C + E)] -M = -(xc±+E)[I - -- Ax+Ef
0 0

which can be removed from Z' leaving behind a

PR remainder.

Next, by Equation 15, Z" has a 2 x 2 pole

matrix in its 1,2 2,2 position

al 21212 -a1
a 1 1

-a 12  ai1j

2b 222b1 2

whIch can be removed from Z" leaving a PR

remainder,
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0 - .
2b

1 2

K

-W
0 0

2b 12

-KT
T

Thus the connections for the realization of Z

are as shown in Figure 27.

The addition of -B is to compensate for the

addition of B to Z. Observe the common terminals

!g and 2g. There ale in fact three external

terminals (la,lb,lc) associated with port 1.

Similarly for port 2. This 9ives a total of

si6 terminals and two commons for the network made

up of -B, N and M.

-B is not PR, but it can be absorbed into a

6-terminal (4 port) matrix given by

-B +N I N

T

N N + M
I I
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shown in Figure 28.

To see that T is PR we proceed as follows.

-B + N ( s (XC + E) + XD + F] +s A-

0

A 1 2 A(C + E)] + XD + F
0

Define Q I - A(XC + E)
0

and G = XD + F

Then -B + N 2 A-IQ + G

Also, N + M = A-1 + s (XC + E) (I - 2 A(XC + E)
0 0

A- [I - A(XC + E)]-
2 CW .0

s A-IQ-I

AQ I A G iI I

Hence T =- --- +
2I

A A- A-

We note first that A Q is PR since it was
2

formed from the addition of M and N, both PR.
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A 0 being the residue at a j-axis pole,

must be hermitian non-negative definite by condi-
1s -1 1

tion III I . By condition I, 2 A-0I1 must be

real for s real. Hence A-I1 - I is symmetric non-

negative definite.

Since both Q and 0-1 exist, it follows that

Q01 is non-singular. A is positive definite.

Hence A-IQ -1 and its inverse QA are beth

symmetric positive-definite 2 x 2 matrices. We

then have:

A -I

S --- '-- I

A-I A-I

A- 1/2 QA A- 1/2 I

sI

2 T R

Al/ 2 A-IQ1  A 1/2

where

AI/2

R
1 /2k , A
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But A - 1/2 QA A
-1/2

---

~1/2 A 1  1 /

1, /2 A 1 -1 1/2
Q A

where

x I
X - "-------------------

A 1/2 QA A- 1/ 2  I

Hence the reactive part of T is congruent to

4,4
I 4

2

and can therefore be synthesized by two inductors

and a congruence transformer. The constant part

of T is 2 x 2, real skew-symmetric and can thus

be synthesized by a single gyrator.

This completes the proof of Theorem 19.
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We are now able to prove the following:

Theorem 22 Let Z be a PR matrix of degree d. Then

the synthesis of Z, if carried out by the hybrid

matrix method described in Theorems 18, 19, 20 1
and 21 will result in a lossless buffer containing

d reactors, at most d gyrators and a termination

of resistors and gyrators, plus ideal transformers. 3
A

Proof. Assume a PR matrix Z to be synthesized.

The removal of an entire j-axis pole at any time, I
will reduce the degree by precisely the degree of

the pole matrix, which appears in the buffer.

Suppose a Case A cycle is called for. Let 3
0 --- co. Let 6Z = m. Hence 6Z = z + 1 sinceo

(b! ) Iof Theorem 18 is 1. 3

Now 5Z" = 2 and 5Z' = m - 1. The absorp-

tion of -b into the perfectly coupled trans- I
former requiru one reactor from Z" and one from

Z'. This transformer then has degree 1. Thus

the buffer has degree 2, one due to the trans-

former and one remaining in Z". The degree of

the termination is m - 2. Thus the cycle is mini-

mal.
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Suppose w = 0 or o. Then no Brune im-0

pedance is added. 5Z" = 1 and 5Z' = m - 1 and

again the method is minimal.

Suppose a Case B cycle is called for. Let

6Z = m. Then 6Z = 5(^ + B) = m + 1, since 6B = 1

and B and Z contain no common poles.

6Z" = 2. Hence 6Z' = m - 1. Both reactors

in Z" are used to absorb -B, resulting in a 6

terminal reactive buffer of degree 2. Z' con-

tributed a reactive matrix of degree 1 to the

buffer. Thus the degree of the termination is

m - 2. Thus in every case the method is minimal.

In both Cases A and B, Z" contains at most

1 gyrator. In case B, the Brune section B(s)

adds at most 1 gyrator to the buffer. Hence in

every case, the degree is reduced by 2 for at

most 2 gyrators in the buffer.

This completes the proof of Theorem 22.

In the following pages the entire synthesis

procedure is illustrated in flow chart form. The

-various steps are in accord with the lemmas and

theorems of this chapter.
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Syntesis of~

Y N

7Realize with R,G and Itransformers

Any i-axis poles?) I
I Y N

mainder.I

S is or any principal
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Z singular?

Remove rebistance

2,identically sinp-

Take w 0Re Z singular at j(o ?

ZliY N

-Apply congruence trans- Apply congruence trans-
formation to give formation to give
~DZ Dand H1 ( j 0 Z =D T ZDand Z, :1OO)

-f-singular1.

T H11 identically 
zero?

y

Remove gyrators CD=0 or :.o?

is the remainder N

Case A Case A Cse
Entry 21 Entry 11
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Case A

Entry 11

Choose b(s) such that +b =01

Z Z+b ' b ( (at s=jco)

Reov oles at + jw 0Call thdir sumi PI

-J0

b capacitive,,,

Form pole from an G)FrmZ" rl

Z min te series pole s

A
how Z.

Return t
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-aeA

Entry 2

__ I
Z is now Z

IForm r 1 (z)

Iemove pole at s = w 0Call it P

[Let rI1 (Z) -P=Q

Re~turn to 1
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tT

Case B

Find B(s) such that " + B is

singular at jco" Z =Z + B

[Form rI (Z)I

Remove poles at + 'cz . Call

their sum P

Add G to P so that Z" = r 1,2 (P+G) I

Shas a gyrator portic,l of rank 2.1

1,2
Remove series poles from Z' and Z"I
Use them to absorb.-BI

12 is now z, minus the series polel

Return to 11
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Example of Case B Synthesis

In order to demonstrate the Case B synthesis

procedure, we have selected a matrix which already

has the property that the hermitian part of its

first principal 2 x 2 submatrix is singular on the

j-axis. Thus the initial removal of resistance

is not necessary in this case. Clearly no gener-

ality has been lost by selecting such a pre-

conditioned matrix.

We wish to synthesize Z =

37s + 43s + 10 s + 1 13s + 14
(s + l)(s + 2) 6 s + 2 s +2

s s+l s+l
ss+2 s+2 s+2

lls 2 2 s + 1 5s + 6
s+2s 4- 2 s + 2

Computing Z at s j we obtain

) • ,t

. ...- - - - - --.. ..



I
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51 + j62 6(3 + j) 41 + j12

5 6(l j2) 3 + j 2(3 + j)

7 + j24 2(3 + j) 17 + j4.

51 12-j3 24-j6 62 9-j6 18-j17

1
= 12+j3 3 6 + j  9+j6 1 25

24+96 6 17 8+j17 2 4

- ZH(j) + ZSH(9).

Hence

51 12-j3
IV 1
ZHI11 (J) =:

12+j3 3

is singular, and so for this case w = 1.0

Brune Section

In order to make Z'11 (j) singular it is neces-

sary to add a Brune section which cancels (SHI1(j)-
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In Lemma 9 an existence theorem is given which
Pd

shows that a matrix B exists such that Z + B

is singular at s = j. In what follows the matrix

B is obtained in a slightly different fashion, one

which is perhaps computationally more convenient.

B(s) will be so chosen that B(j) cancels the

matrix ZSH I(j). To gilie B(s) its required prop-

erties we also add an undetermined amount of the

matrix ZH ; ). The determination of the multir

plier finally fixes B and is done i, such a way

that B has a rank 1 pole at co.

62 Ij 51 12-j3
B(j) =  - 5 - j X

9+j6 1 12+j3 3

where X is chosen so that B(s) has a symmetric

portion comprised of a rank 1 pole at oo, plus

a constant skew--symmetric matrix. The symmetric

part of B(j) is

~62+51X 912

B(j) + B(j) T

2
2 ~9+12X 1+X
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which must be made singular by the choice of X.

ie. (153X 2+237X+62) - (144X 2+216X+81) = 0

This gives

6 I
66

Using X -7 5F gives3

l7 Yg-I l+2v/g 0 [-

2 2
B(j) = j +
B )1 + 2 5 + F ( F- l ) 0

2 2

i.e. we add to Z the PR matrix
_!

- 17v5~-1 1+2F5 0F5-1\

B(s) s +

+2+51+ F,0)
2 2

Letting Z + B Z we obtain

S + 7+5V3)] ( 51 12-j3

12+j3 3

which is singular as required. Z(s) follows.
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------------------------------------- ------

4 N W

4!
-N 4 I

N!

I

1~1
-* I

- II

* I

I' -j

4I

4In

I' I
'- I

!

N
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Zl1 is singular at a = j, and so r 1,2(Z) will

have a pole at s = j. Let

U = Zl&l (I Z
2 11 1

Then we can extract the. pole matrix from U. The

residue matrix in Z 1  at s = j is

j1 1 4
s=j -4-j 17 /

Thus the residue matrix of the pole in U at s = j

is

V = (s- j)U

0 1 -4+j 1 O- 41+j12

= 3-F 0 1 -4-j 17 )0 1 6+J2
4\ 5

7+J24 6+12
5 5
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3 -4+j -3-j 2

4

.-3+j2 10-jll 13

which is of rank 1.

The pole at s = -j in U has a conjugate residue V*

The entire pole matrix removable from r , 9,is

thus

P(S) =V + V
S-j S+j

2s -(Bs+2) -6-

-(8s-2) 34s 20s-22J

-(6s+4) 20s+22 26s/

9

Letting Z'(s) r r1,2 (P) we obtain Z"

f'34s 8s+2 11(-r

8s-2 2s 2 (3-Vf5)

11(3,r5 -2 3-V19 0



I
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/17 4 0

i.e. "(s) 2 s 4 1 0

0 0 0

0 31

+ -3- 0 2

2

-11 -20

which is PR of degree 2, with 1 gyrator.

We now form r1,2 (Z) which is given on the

following page. Q = r1,2(Z) - P is given on the

page following r, 2 (Z).
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4-.e z W

N -a
&4

,

LjJ

0



II
U

148-

F

I

'Ta

N
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V -

N o
t N
'a U)
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N
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Then Z'(s) = r 1 , 2 (Q) =

/. (37+17 r5) '
s(62+29R) I s +2 I 2-3

I 25+11 r5+ 35+153 + 2
4- -- ---- -----I

(37+17 ) I (11+5 M')
ss I -1- F'5

2 2

17+7V3 I 7+3V'5
2 + 2

4+5 I I
i'5 1+ 

5

62+2~/~37+171/5
62+29F5 2T.~ 0

20

= +v¢ 11+5 '
2 2 0

0 0 0

/3s 1i1 21197
35+15F5 2 3+5

+ 21+9V 7+3 0

4 2

3+V- 0 5



I
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0 +-1-4 512

+ 20

1+4F5 1+F5 0

The first of these three terms is a rank 1 pole

at o and can be realized by a single inductor

and ideal transformers. The second term is I
purely resistive and can be realized by 3 resis- I
tors and ideal transformers, and the third term

can be realized by a single gyrator and ideal I
transformers.

The rank 1 pole at co in Z' is called M. I
It is caused by the addition of B to Z.

From Z"(s) we obtain a series pole at oo

given by J
17 4 0

N = s-315 4 1 0

0 0 0

The connection sequence of Z', Z", M, N and -B

is shown in Figures 29, 30, 31 and 32.
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The matrices -B, N and M of Figure 32 are com-

bined by the method given in the proof of Theorem

21 into a matrix

-B+NN N

N N+M

The reactive part of T is

26 5 51+17 12+4,15
2 2

2 2

s

51+17F5 12+4r5 175+75f5 49+21R
2 2 2 2

12+4r 3 +,F5 4 9+2lr 14+6T5
2 2 2 2

which is rank 2 and may be realized by con-

gruence transformer and 2 inductors. The final

realization for Z is shown in Figure 33.

-F-7--



APPENDIX I

The PR Property.

A. THE IMPEDANCE MATRIX.

Definition 1.1 A network is said to be

passive if there are no energy sources within j
that network.

Suppose a network is excited by an external

energy source. Any increase of the energy with- j
in the netwok must be obtained from that external

source. We thus have

Axiom 1.1 A passive network cannot posess an

increasing amount of energy when all external

forcing functions are zero.

Suppose that a passive network is excited

by an external forcing function, which is periodic

(period T). Once a steady state has been achieved

the transfer of average energy can only be from

the exciting source into the network. We state

this as

Axiom 1.2 The average energy supplied to a pas-

sive network by a periodic source is, in the

steady state, non-negative.

-152-
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Let e(t) be the instantaneous energy enter-

ing a passive network and p(t) the instantaneous

power. Then

p(t) d e(t)
= dt

Let the source be periodic and let a steady state

exist. Then

(n+l)T1
Pave 1 f p(t) dt

nT

1
=-[e((n+l)T) - e(nT)].

By Axiom 1.2, e((n+l)T) - e(nT). Hence we have

the following

Theorem 1.1 The average Eo'.er entering a passive

network from a periodic source is, in the steady

state, non-negative.

Suppose that there are n ports at which

forcing functions may be applied, and let the

responses be measured at those n ports. Let the

network consist of finite numbers of resistors,
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capacitors, gyrators, ideal transformers, self

and mutual inductors,' all of which are linear.

Let the forcing functions at the n ports be cur-

rents, and the responses be voltages.

Then vk(t), the voltage at the k-th port

is related to ir (t), the current entering the

r-th port by a linear differential equation of

the form

P m q rv~
(lMi) z kmvk(t) = vZ D (t)

m=O v=0 r r

where D means d

The coefficients akm and Prv are obtained

by the application of Kirchhoff's laws to the

network. Since a network comprised of a finite

number of elements can have only a finite number

of loops and nodes, it follows that p and q are

finite. Moreover, if all of the elements in the

network are physically realizable, then their

values are given by real numbers. The applica-

tion of Kirchhoff's equations will encounter only

c eal numbers and so all of the 'km and Prv will

be real.
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Suppose we restrict the forcing functions

i r(t) to be in the class of functions which are

Laplace transformable. Assuming no stored energy

within the network at t = 0, we obtain, by trans-

forming both sides of Equation 1.1,

q v
7. Prv s

v=O
Vk(s) p Ir (s)

z a. kmsm

m=O

where s is the Laplace complex variable.

Define

q v
z. Prv s

v=O
Zkr p 

m=O

Zkr is a rational function in s with real coef-

ficients.

By the assumption of linearity .if currents

are simultaneously applied to all n ports,

n
Vk(S) = Z Zkr(s)Ir(s) k=l,2...n

r=l
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This gives the general equation for the netwozk as

v (s)l = z(s)I(s)l,

where V(s)j is the vector of Laplace transfo5:ms of

the port voltages and I(s)j the vector of port j
currents. Z(s) is an n x n matrix called the

driving point impedance matrix. We have thus

proved the following

Theorem 1.2 Let Z(s) be the driving point im- I
pedance matrix of a passive linear finite lumped 3
(PLFL) electrical network. Then the elements of

Z(s) are rational functions of s with real coef- i
ficients. I
B. CONSTRAINTS ON THE POLES OF z...1J

Let all currents be zero, except for i r(t).

Suppose that i r(t) is a rectangular pulse of

finite duration starting at t = 0, and such that
after t = tI, i r(t) = 0. If z kr(s) posesses

poles in Re s > 0, then it can be shown that

after t = tI, when all forcing functions are

zero, vk(t) increases without bound. Since this

implies an increase in the internal energy of

the system, a violation of Axiom 1.1 is
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encountered. Hence Zkr(S) cannot have poles in

Re s > 0, and this id true for k,r = 1,2...n.

Assume Zkr(s) has a pole on the j-axis at

s = Jo and apply the same current pulse.

If the pole has a multiplicity equal to m then

vk(t) will have in it a term f(t)cos(w0 t+0)

where f(t) is a polynomial of degree m-1.

Clearly if m > 1, this term will have an ampli-

tude which increases without bound, again viola-

ting Axiom 1.1. We thus have

Theorem 1.3 Let Z be the impedance matrix of

a PLFL network. Then the z have no poles in

Re s > 0 and any poles on Re s = 0 are of single

multiplicity.

C. ENERGY CONSIDERATIONS

Suppose a network whose impedance matrix

is Z(s), is excited by a current vector i(t)4

where ir (t) is entering at the r-th port. Let

i(t)j be of the form

. . ......
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m1cos(u 0 t+a1 )

m2 cos(wo0t+a2)

m ncos(W ot+a n )

where mk , ak and W0 are all real, and where0

0 / 0 or oo. Note that all components ofo

i(t)j are sinusoidal with the same frequency.

Phases ak and amplitudes mk are completely

arbitrary.

i(t) may be written

m me Ja,1

m e Ja,

i(t4j = Re ejwot I

me ja,

Let II =al+ jbi

me~

mn e aa

n

ml4,
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where al and bi are real n-vectors. Then

()I= Re (e jCUot I I) -

Let T) (t)1 ejat I~ Then letting H (s)j

be the Laplace transform of 71(t)j, we have

s - jCW0

If H(s)j is applied to the ports of Z(s)

the corresponding voltages will be

N(s)I Z(s)H(s)j

-Z(s)-

S -, jl)o

Assume that jW 0is not a pole of Z(s).

By Theorem 1.2, j-axis poles in z. . (s) are

simple, and poles in the right half plane do not

ekcist. Hence letting n(t)j be the inverse

Laplace transform of N(s)j we obtain

**
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n(t)4 = Z(jw 0 )eJ(ot I+ z Wk Ik(k - ' o)

+ Fr (t)e ((Y +Jar)t it
r

where Wk is a residue matrix at a possible

j-axis pole of Z(s) and where Fr (t) is a matrix

of polynomials in t of order one less than the

multiplicity of the r-th pole of z ij(s) in the

left half plane at s = ar + jWr$ (ar< 0).

In the steady state, (t very large)

jW'tWke J°wt

n(t)4 = Z(j0)e J + k 7 ilk ij (Wk -o)

n(t)l has a real and an imaginary part. The

response to the real part of 71(t){ must be the

real part of n(t)f.

Hence if i (t)j = Re (e jwt I ) we obtain

Re[Z~W )ee J°otv(t)j = Re(Z(Jw 0)e Jqt Ij + E. WIfe]~~

k J(wk -- 'o)

The instantaneous steady state power into the

network is
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n

PS (t) = z l m (vMM

= Re(ejw~t-I) Re(Z(jw 0 ) ejw~t II)

+ Re(eJ oI) Re(Z (WkJ W-T I)k T7 0 I

Recall that II = a +- jbf.. Let

Z~jw0 )1 Ej = c4 + jdJ

and

-TWkIt =e kl + fl

Then

pS (t) = Re( (-a + j5) jcW*h Re( (cl + jdI ) ejw t

+ Re ((a"+ j-b)e jwt) Re Z (e k + jf k jeot)

k

=cco 2 w 2 t + bdlsi Sf 2 wt

0 0

+ (a cos w t -b sin cu t) Z (eOjcos Cnt - sin wkt)
0 0 k
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The average power will be

W 27r/w0
Pave - f Pss (t)dt

0

Now,

1 Re (IEf) - Re[(,- jb)(c + jdJ)j

1f(-acl + Sbd ).

Thus

1 -

Pave 2 Re(I*El).

But El = Z(jw0o)IJ. Hence

p -"
Pave 2 Re(I*Z(jw o)I1).

But by Theorem 1.1, P -a 0. Hence we mustave

have, for 0 not a pole of Z(s) ando

for 0-< w 0< oo,

Re(I*Z(J0 o)11) - 0.

e0
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If wo = 0, T) (t)j = Ij which is real and

n(t)j = Z(0)Il which is also real. Hence

Ps5 (t) : Re (I) Re(Z(0)I)

+ terms due to possible

j-axis poles in z. (s)

= Re a Re cl

=ac

Hence Pave = ac, and

Re(I*E) = Re(-ac) = Ic

Thus as lefore, for 0 not a pole of z ij(s),

Re(I*Z(0)Ij) - 0.

If 0 = oo we apply the transformation

s =-. Then s = co maps into s' = 0. An
s

inductor sL is now replaced by a capacitor

11
-1 and a capacitor -I is replaced by an

inductor s' (,). Clearly this is a passive net-
w.0

work and as before Pav - 0, which implies

ave
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Re(I*Z(s)II ) e 0 at s' = 0

We have thus proved

Theorem 1.4 If Z(s) is the driving point imped-

ance matrix of a PLFL network and jw is not a

pole of Z, then for any complex vector x,

Re(x*Z(jw 0)Xj) - 0.

Corollary 1.4.1 The hermitian part of Z(s) is

non-negative definite everywhere on the j-axis

where Z has no poles.

Proof.

Re(x*Z(s)x) = x*Z H(s)x4 for all x'

Corollary 1.4.2 If Z(s) is the impedance

matrix of a lossless network (i.e. without res-

istors) then ZH(s) is null everywhere on the

j-axis where Z has no poles.

Proof. Since the average power delivered to

the network is zero,

Re(!*Z(jw o)X) = 0

for all x
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D. THE ASSOCIATE FUNCTIONS

Definition 1.2 Let f(s) be a rational function

of the complex variable s, with real coefficients.

Then f(s) is said to be a real rational function

of s.

Definition 1.3 Let F(s) be a matrix whose ele-

ments are rational functions of s. Then F is

said to be a rational matrix function of s.

F may be a rational matrix function which is

any or all of square, real, symmetric etc.

Definition 1.4 Let F be a square real rational

n x n matrix function and let x be a constant

complex n-vector. Then f(s) = x*Fx1 is called

an associate function of F. Note that for any

F there are arbitrarily many associate functions.

If F is symmetric then f is a real rational

function for any 7 . If Z is real then f is

a real rational function even if F is not sym-

metric.

In general however, f is a rational function

with complex coefficients.

Theorem 1.5 Let Z(s) be the matrix of a PLFL

electrical network Let z(s) be an associate
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fu~nction of Z. Then

i) Re z(s) - 0 for Re s = 0

ii) z(s) has no poles in Re s > 0

iii) If z(s) has poles on Re s = 0

then they are of single multiplicity, j
and have positive real residues.

Proof.

Proposition i) follows immediately from

Theurem 1.4.

By Theorem 1.3, none of the z.. have poles
n n 1

in Re s > 0. Now z = Z Z z..x.*x and
i=l j=1 i j ' I

so z(s) cannot have poles in Re s > 0. Hence

ii) is proved.

By Theorem 1.3, if any of the z.. have poles

on Re s = 0, then they are of simple multiplicity.

Hence z(s) can have pole.s on Re s = 0 only if

they are simple.

Suppose z(s) has a pole at jcn . Let

s-jwo = pe je. Then for very small p,

Ke ja

z(s) e j
pe e

A
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where Kej a is the residue at the pole. Since

Re z(s) - 0 on s = jt (by i) we have

cos(a + 9) ?- 0 fore = 7r/2, -vr/2.

But this can only be true if o = 0, i.e. z(s)

has a positive real residue at a j-axis pole.

This completes iii) and provcs the theorem.

Corollary 1.5.1 If Z, the matrix of a PLFL

network, has a pole on the j-axis then the

residue is a non-negative definite hermitian

matrix.

Proof.

Let z(s) = x*Z(s)xi. If Z(s) has a pole atr s = jWO , let W = (s - jo)Z(s)j be the

residue matrix, and let

w = (s - jco0)z( s )  0 be the

residue in z(s). Then

w = x*Wxl.

But if w if non-zero, then by iii) of Theorem

1.5, it must be positive and real. Hence
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x*Wxj ! 0.

This mt ans that WH is non-negative definite and

WSH is null. Hence W is non-negative definite

hermitian, which proves the corrolary.

E. FURTHER IMPLICATIONS

Lemma 1.1 Excluding possible j-axis poles, let

f(s)

i) be regualar on Re s = 0

ii) have no poles in Re s > 0

iii) be such that Re f(s) a: 0 on

Re s = 0.

Then Re f(s) -! 0 for Re s - 0.

Proof.

Let C be the closed curve consisting of the

j-axis except at poles of f(s) where C is a

small semi-circle of radius p in the right half

plane. Let R be the region enclosed by C, in

the right half plane.

By the Principle of the Minimum, (well

known in functions of a r-omplex variable)

O 4 Re f(s) - Re 1(s) R

s c sER
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Since p can be taken arbitrarily small it follows

that, except at possible j-axis poles,

Re f(s) -N 0 for Re s - 0.

This proves the lemma.

Corollary 1.1.1 If z(s) is an associate function

of Z(s), the matrix of a PLFL network, then

Re z(s) - 0 for Re s ;t 0.

Proof.

By Theorem 1.5, all conditions of Lemma 1.1

are satisfied for z(s).

We can now prove the following

Theorem 1.6 Let Z(s) be the matrix of a PLFL

network. Then ZH (s) is either hermitian positive

definite in Re s> 0 or it is identically null

for all s.

Proof.

Let z(s) be an associate function of Z(s).

Suppose Re z(s) = 0 at an isolated point s = s

in the right half plane, and suppose that z(s)"

is not identically zero. i.e.

Z(so) = jo (P real)
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Then

1 
Ke ja

z(s) - j (S - + g(s)

where g(s) has poles at s 0 of order n-i or less.
e

Let s - s 0 pe Then for p sufficiently

small,

Re(-,cos(a - ne)Rez(s ) _ P

Now

Re( 
Re z(s)

z(s) - Re z(s)) 2 + (Im z(s) - 2

But by the corollary to Lemma 1.1, Re z(s) - 0

in Re s - 0. In particular, this is true on

je
s - = pe . Hence

cos(a - ne) -j 0 for 0 .- e -! 2Tr.

Clearly then n = 0. But in that case Re z(s)

does not have a zero at an isolal-Q'd point in

Re s >- 0, which contradicts the assumption that

it does.

Since Re z(s) -t 0 in Re s -! 0, either
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Re z(s) >-0 in Re s > 0 or Re z(s) =0 for all s.

Since this is true for any associate function of

Z(s) it follows that either ZH is hermitian

positive definite in Re s > 0 or it is null for

all s. This completes the proof of the theorem.

F. THE PR PROPERTY

Definition 1.5 A square matrix function F(s)

is said to be positive real (PR) if I and II

are satisfied.

I The matrix elements fij are rational

in s with real coefficients

II For any complex vector x

Re(x*Fxj) ?: 0 for Re s - 0.

Theorem 1.7 Let F(s) be a square real rational

matrix function. Let f(s) be an associate func-

ticn. Then F(s) is PR if and only if

IIa. Re f(s) ?L 0 for Re s = 0

IIb. f(s) has no poles in Re s> 0

IIc. For Re s = 0, poles of f(s) are

simple and have non-negative residues.

Proof.

Suppose F(s) is PR. Then for any vector 'R



r
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Re f(s) = Re(3*Fxj ) - 0, on Re s = 0

Suppose f(s) has a pole in Re s > 0. i.e.

Ke 3a
f(s) = + g(s),(S - SO)fn

where g(s) has poles of order n-l or less at s 0

00Let s - s 0= pe 3 @  Then for very small p,

f~s ~K ej (a - ne)

and Re f(s) = K cos(a - ne), (0 i- e -5 2r).p

But this is non-negative which can only be true

4 n = 0. Hence f(s) cannot have poles in

Re s> 0.

Suppose f(s) has a pole on the j-axis.

Then, following the proof of proposition iii)

of Theorem 1.5, such poles of f(s) are simple

and have non-negative residues.

This completes the proof of the theorem.

Corollary 1.7.1 Let F(s) be a PR matrix. If

F(s) has a j-axis pole then the residue matrix

is hermitian non-negative definite.
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Theorem 1.8 Let Z(s) be the impedance matrix

of a PLFL network. Then Z(s) is PR.

Proof.

By Theorem 1.2 the z i are rational real functions

of a.

By Theorem 1.4, for any vector x

Re(x*ZxI) - 0 on Re s = 0.

By Theorem 1.6, either

Re(x*Zxl) > 0 in Re s > 0

or it ,is identically zero. Hence

Re(X*ZxJ ) !- 0 in Re s ?! 0.

This proves the theorem and completes the appendix.



APPENDIX II

Diagonalization of Skew-symmetric Matrices.

Let A be a real skew-symmetric matrix of

order 2n. Then there exists an orthogonal

matrix V such that

(: i' 0
I

I 0
I
I- I

V TA V =-2 0
V=

T0
on

0 0
I f

HI- n  0

where the ILk are real and possibly zero. This

is proved as follows.

Lemma 2.1 The eigenvalues of a real skew sym-

metric matrix are pure imaginary, or zero.

Proof.

Let A be real skew symmetric, let N be an

-174-
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eigenvalue with associated eigenvector x.

Then

Axt = Xx . . . . 1.

and

Ax*j = )*x*l . . . 2.

Hence x*AxI = Xx and x-*x

HeceT T (b L lf -IXY

by 2. Since X- is not the null vector

x = -N*. QED

Lemma 2.2 Let A be a real skew symmetric matrix,

let ip be an eigenvalue (p. real, nonzero) a,!'d let

x| + iyl be the associated eigenvector, where the

vectors xl and yj are real. Then xl and y are

orthogonal.

Proof.

A(xi + iyl) = i#(xi + iyl)

Thus

Ax4 = -4y| ....... ..

and
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Ay| =txlj . . . . . . . 2.

Hence by 2, '(Ay )= -xyj , giving pyx =-

But t, xI and y| are real, nonzero.

Thus 3xy = 0. QED

Lemma 2.3 Let A be a real skew-symmetric n x n

matrix, i.i a nonzero eigenvalue with associated

eigenvector x + iy4 . Let M be a real ortho-

gonal matrix whose first two columns are x and y

Then

0

MTA M 0

¢ ' AI n-2

where An-2 is a real skew symmetric matrix of

order n-2.

Proof.

Let M = (xi y4 m 3 . . . mnI) be an orthogonal

matrix. Then

AM = ( A I Ayl Am 31 . . . Amn

= (-Lyj bxj Am 3 .. Am n)
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Now

3tAm3  =-Mi3 x

=0.

Hence

MTAM= x (-_.Lyl j1xl Am~l.. Amni)

m 3

m
n

0 0i .0...0

0 0 0 .. 0

0 0

I A
I n-2

0 /
Since A is skew-symmetric, so is V TA V. Hence

so is An-2 . QED
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Theorem 2.1 Let A be a real skew-symmetric matrix

of order 2n. Then there exists an orthogonal

matrix V such that

0 l I~

0

I 0 0 21
I I

T I

0I

00
In

i-Un  0

where the Li are real and some possibly zero.

Proof.

If A has only zero eigenvalues then it is the

null matrix and we take V as the identity matrix,

and the proof is complete. If A has a nonzero

eigenvalue, let it be called ijl. Then by Lemma

2.3, there exists an orthogonal matrix M1 such

that

4..............
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0

i A2 (n-1)i

Suppose, for a proof by induction, that there

exists an orthoaonal matrix M such that
r

t l 0

T

MA r =A r0 r

,lr  0
L10 /AA

2 (n-r)

(We call this the r-fold skew-diagoftalization of

A). If Af2(nr) is the null matrix the rest of

the proof is trivial.

Suppose A 2(n ) is not the null mat ix.

Let K be orthogonal, and

I

I

I

S

rl
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let

0 tr+lI

D T A D = 
1 'r+l 0

r12(n-r) r+l -

A2 Oi-r-l)

The existence of D rlis guaranteed by Lemma 2.3.

Hence KrT MN M Ki

0

0

0 ~ r+11

Sr+l

0

1A

BtMr Kr+1. is a product of orthogonal matrices

and so is again orthogonal. Let M r+i = M rK rl

Th,'n we have shown that if there exiLsts an ortho-

gonal matrix k, which is supposed to skew-dia-

yonalize A to an r-fold level, there also exists
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an orthogonal matrix Mr+l which skew-diagonalizes

A to an (r+l)-fold level.

But M1 exists. Hence Mr exists for all r

positive and integral, where the matrix A has

the nonzero eigenvalues i l. .. . ir (r -4 n).

Let V = MIM. . Mn. Then V is orthogonal and

I 0
-i 0

I l
I 2
I I
I_ 0 IVTA V = _2 .. . _

T

0

1 0 n

I -Ln 0

where some of the pi are zeio. This proves the

theorem.

Corollary. Let A be real skew-symmetric of brder

2n+l. Then there exists an orthogonal matrix V

such that
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0 Lli

0

I

VTA V T n
0I

II0
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Figure 11 is deleted.
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